![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The theory of risk already has its traditions. A review of its classical results is contained in Bohlmann (1909). This classical theory was associated with life insurance mathematics, and dealt mainly with deviations which were expected to be produced by random fluctua tions in individual policies. According to this theory, these deviations are discounted to some initial instant; the square root of the sum of the squares of the capital values calculated in this way then gives a measure for the stability of the portfolio. A theory constituted in this manner is not, however, very appropriate for practical purposes. The fact is that it does not give an answer to such questions as, for example, within what limits a company's probable gain or loss will lie during different periods. Further, non-life insurance, to which risk theory has, in fact, its most rewarding applications, was mainly outside the field of interest of the risk theorists. Thus it is quite understandable that this theory did not receive very much attention and that its applications to practical problems of insurance activity remained rather unimportant. A new phase of development began following the studies of Filip Lundberg (1909, 1919), which, thanks to H. Cramer (1926), e.O.
In recent years, the study of the theory of Brownian motion has
become a powerful tool in the solution of problems in mathematical
physics. This self-contained and readable exposition by leading
authors, provides a rigorous account of the subject, emphasizing
the "explicit" rather than the "concise" where necessary, and
addressed to readers interested in probability theory as applied to
analysis and mathematical physics.
In 2014, winner of "Outstanding Book Award" by The Japan Society for Fuzzy Theory and Intelligent Informatics. Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins by outlining the history and development of the fuzzy random variable before detailing numerous optimization models and applications that include the design of system controls for a dam.
Stochastic Optimal Control (SOC)-a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic processunder uncertainty-has proven incredibly helpful to understanding and predicting debt crises and evaluating proposed financial regulation and risk management."Stochastic Optimal Control and the U.S. Financial Debt Crisis"analyzes SOC in relation to the 2008 U.S. financial crisis, and offers a detailed framework depicting why such a methodology is best suited for reducing financial risk and addressing key regulatory issues. Topics discussed include the inadequacies of the current approaches underlying financial regulations, the use of SOC to explain debt crises and superiority over existing approaches to regulation, and the domestic and international applications of SOC to financial crises. Principles in this book will appeal to economists, mathematicians, and researchers interested in the U.S. financial debt crisis and optimal risk management."
A linear integral equation is an equation of the form XEX. (1) 2a(x)cp(x) - Ix k(x, y)cp(y)dv(y) = f(x), Here (X, v) is a measure space with a-finite measure v, 2 is a complex parameter, and a, k, f are given (complex-valued) functions, which are referred to as the coefficient, the kernel, and the free term (or the right-hand side) of equation (1), respectively. The problem consists in determining the parameter 2 and the unknown function cp such that equation (1) is satisfied for almost all x E X (or even for all x E X if, for instance, the integral is understood in the sense of Riemann). In the case f = 0, the equation (1) is called homogeneous, otherwise it is called inhomogeneous. If a and k are matrix functions and, accordingly, cp and f are vector-valued functions, then (1) is referred to as a system of integral equations. Integral equations of the form (1) arise in connection with many boundary value and eigenvalue problems of mathematical physics. Three types of linear integral equations are distinguished: If 2 = 0, then (1) is called an equation of the first kind; if 2a(x) i= 0 for all x E X, then (1) is termed an equation of the second kind; and finally, if a vanishes on some subset of X but 2 i= 0, then (1) is said to be of the third kind.
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given."
In Complex Potential Theory, specialists in several complex variables meet with specialists in potential theory to demonstrate the interface and interconnections between their two fields. The following topics are discussed: * Real and complex potential theory. Capacity and approximation, basic properties of plurisubharmonic functions and methods to manipulate their singularities and study theory growth, Green functions, Chebyshev-like quadratures, electrostatic fields and potentials, propagation of smallness. * Complex dynamics. Review of complex dynamics in one variable, Julia sets, Fatou sets, background in several variables, Henon maps, ergodicity use of potential theory and multifunctions. * Banach algebras and infinite dimensional holomorphy. Analytic multifunctions, spectral theory, analytic functions on a Banach space, semigroups of holomorphic isometries, Pick interpolation on uniform algebras and von Neumann inequalities for operators on a Hilbert space.
The first formulations of linear boundary value problems for analytic functions were due to Riemann (1857). In particular, such problems exhibit as boundary conditions relations among values of the unknown analytic functions which have to be evaluated at different points of the boundary. Singular integral equations with a shift are connected with such boundary value problems in a natural way. Subsequent to Riemann's work, D. Hilbert (1905), C. Haseman (1907) and T. Carleman (1932) also considered problems of this type. About 50 years ago, Soviet mathematicians began a systematic study of these topics. The first works were carried out in Tbilisi by D. Kveselava (1946-1948). Afterwards, this theory developed further in Tbilisi as well as in other Soviet scientific centers (Rostov on Don, Ka zan, Minsk, Odessa, Kishinev, Dushanbe, Novosibirsk, Baku and others). Beginning in the 1960s, some works on this subject appeared systematically in other countries, e. g., China, Poland, Germany, Vietnam and Korea. In the last decade the geography of investigations on singular integral operators with shift expanded significantly to include such countries as the USA, Portugal and Mexico. It is no longer easy to enumerate the names of the all mathematicians who made contributions to this theory. Beginning in 1957, the author also took part in these developments. Up to the present, more than 600 publications on these topics have appeared."
A NATO Advanced Research Workshop on Classical and Modern Potential The- ory and Applications was held at the Chateau de Bonas, France, during the last week of July 1993. The workshop was organized by the Co-Directors M. Goldstein (Ari- zona) and K. GowriSankaran (Montreal). The other members of the organizing committee were J. Bliedtner (Frankfurt), D. Feyel (Paris), W. K. Hayman (York, England) and I. Netuka (Praha). The objective of the workshop was to bring to- gether the researchers at the forefront of the aspects of the Potential Theory for a meaningful dialogue and for positive interaction amongst the mathematicians prac- tising different aspects of the theory and its applications. Fifty one mathematicians participated in the workshop. The workshop covered a fair representation of the classical aspects of the theory covering topics such as approximations, radial be- haviour, value distributions of meromorphic functions and the modern Potential theory including axiomatic developments, probabilistic theories, studies on infinite dimensional Wiener spaces, solutions of powers of Laplacian and other second order partial differential equations. There were keynote addresses delivered by D. Armitage (Belfast), N. Bouleau (Paris), A. Eremenko (Purdue), S. J. Gardiner (Dublin), W. Hansen (Bielefeld), W. Hengartner (Laval U. , Quebec), K. Janssen (Dusseldorf), T. Murai (Nagoya), A. de la Pradelle (Paris) and J. M. Wu (Urbana). There were thirty six other invited talks of one half hour duration each.
Recent years have witnessed an increasingly close relationship growing between potential theory, probability and degenerate partial differential operators. The theory of Dirichlet (Markovian) forms on an abstract finite or infinite-dimensional space is common to all three disciplines. This is a fascinating and important subject, central to many of the contributions to the conference on Potential Theory and Degenerate Partial Differential Operators', held in Parma, Italy, February 1994.
"Et moi9 .., ' si j*avait su comment en revenir, je One service mathematics has rendered the n 'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded nonsense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Exactly one hundred years ago, in 1895, G. de Vries, under the supervision of D. J. Korteweg, defended his thesis on what is now known as the Korteweg-de Vries Equation. They published a joint paper in 1895 in the Philosophical Magazine, entitled On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave', and, for the next 60 years or so, no other relevant work seemed to have been done. In the 1960s, however, research on this and related equations exploded. There are now some 3100 papers in mathematics and physics that contain a mention of the phrase Korteweg-de Vries equation' in their title or abstract, and there are thousands more in other areas, such as biology, chemistry, electronics, geology, oceanology, meteorology, etc. And, of course, the KdV equation is only one of what are now called (Liouville) completely integrable systems. The KdV and its relatives continually turn up in situations when one wishes to incorporate nonlinear and dispersive effects into wave-type phenomena. This centenary provides a unique occasion to survey as many different aspects of the KdV and related equations. The KdV equation has depth, subtlety, and a breadth of applications that make it a rarity deserving special attention and exposition.
Many special functions occuring in physics and partial differential equations can be represented by integral transformatIons: the fundamental solutions of many PDE's, Newton-Coulomb potentials, hypergeometric functions, Feynman integrals, initial data of (inverse) tomography problems, etc. The general picture of such transfor- mations is as follows. There is an analytic fibre bundle E --+ T, a differential form w on E, whose restrictions on the fibres are closed, and a family of cycles in these fibres, parametrized by the points of T and depending continuously on these points. Then the integral of the form w along these cycles is a function on the base. The analytic properties of such functions depend on the monodromy action, i.e., on the natural action of the fundamental group of the base in the homology of the fibre: this action on the integration cycles defines the ramification of the analytic continuation of our function. The study of this action (which is a purely topological problem) can answer questions about the analytic behaviour of the integral function, for instance, is this function single-valued or at least algebraic, what are the singular points of this function, and what is its asymptotics close to these points. In this book, we study such analytic properties of three famous classes of func- tions: the volume functions, which appear in the Archimedes-Newton problem on in- tegrable bodies; the Newton-Coulomb potentials, and the Green functions of hyperbolic equations (studied, in particular, in the Hada- mard-Petrovskii-Atiyah-Bott-Garding lacuna theory).
This volume contains twenty refereed papers presented at the 4th Seminar on Stochastic Processes, Random Fields and Applications, which took place in Ascona, Switzerland, from May 2002. The seminar focused mainly on stochastic partial differential equations, stochastic models in mathematical physics, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance and insurance.
This volume consists of the proceedings of the NATO Advanced Research Workshop on Approximation by Solutions of Partial Differential Equations, Quadrature Formulae, and Related Topics, which was held at Hanstholm, Denmark. These proceedings include the main invited talks and contributed papers given during the workshop. The aim of these lectures was to present a selection of results of the latest research in the field. In addition to covering topics in approximation by solutions of partial differential equations and quadrature formulae, this volume is also concerned with related areas, such as Gaussian quadratures, the Pompelu problem, rational approximation to the Fresnel integral, boundary correspondence of univalent harmonic mappings, the application of the Hilbert transform in two dimensional aerodynamics, finely open sets in the limit set of a finitely generated Kleinian group, scattering theory, harmonic and maximal measures for rational functions and the solution of the classical Dirichlet problem. In addition, this volume includes some problems in potential theory which were presented in the Problem Session at Hanstholm.
ICPT91, the International Conference on Potential Theory, was held in Amersfoort, the Netherlands, from August 18--24, 1991. The volume consists of two parts, the first of which contains papers which also appear in the special issue of POTENTIAL ANALYSIS. The second part includes a collection of contributions edited and partly produced in Utrecht. Professor Monna wrote a preface reminiscing about his experiences with potential theory, mathematics and mathematicians during the last sixty years. The final pages contain a list of participants and a compact index.
The term "weakly differentiable functions" in the title refers to those inte n grable functions defined on an open subset of R whose partial derivatives in the sense of distributions are either LP functions or (signed) measures with finite total variation. The former class of functions comprises what is now known as Sobolev spaces, though its origin, traceable to the early 1900s, predates the contributions by Sobolev. Both classes of functions, Sobolev spaces and the space of functions of bounded variation (BV func tions), have undergone considerable development during the past 20 years. From this development a rather complete theory has emerged and thus has provided the main impetus for the writing of this book. Since these classes of functions play a significant role in many fields, such as approximation theory, calculus of variations, partial differential equations, and non-linear potential theory, it is hoped that this monograph will be of assistance to a wide range of graduate students and researchers in these and perhaps other related areas. Some of the material in Chapters 1-4 has been presented in a graduate course at Indiana University during the 1987-88 academic year, and I am indebted to the students and colleagues in attendance for their helpful comments and suggestions."
During the of Fall 1991, The Centre de Recerca Matematica, a research institute sponsored by the Institut d'Estudis Catalans, devoted a quarter to the study of stochastic analysis. Prominent workers in this field visited the Center from all over the world for periods ranging from a few days to several weeks. To take advantage of the presence in Barcelona of so many special ists in stochastic analysis, we organized a workshop on the subject in Sant Feliu de Guixols (Girona) that provided an opportunity for them to ex change information and ideas about their current work. Topics discussed included: Analysis on the Wiener space, Anticipating Stochastic Calculus and its Applications, Correlation Inequalities, Stochastic Flows, Reflected Semimartingales, and others. This volume contains a refereed selection of contributions from some of the participants in this workshop. We are deeply indebted to the authors of the articles for these exposi tions of their valuable research contributions. We also would like to thank all the referees for their helpful advice in making the volume a reflection of the dynamic interchange that characterized the workshop. The success of the Seminar was due essentially to the enthusiasm and stimulating discus sions of all the participants in an informal and pleasant atmosphere. To all of them our warm gratitude."
Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of caglad integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations.
Now in its second edition, this popular textbook on game theory is unrivalled in the breadth of its coverage, the thoroughness of technical explanations and the number of worked examples included. Covering non-cooperative and cooperative games, this introduction to game theory includes advanced chapters on auctions, games with incomplete information, games with vector payoffs, stable matchings and the bargaining set. This edition contains new material on stochastic games, rationalizability, and the continuity of the set of equilibrium points with respect to the data of the game. The material is presented clearly and every concept is illustrated with concrete examples from a range of disciplines. With numerous exercises, and the addition of a solution manual for instructors with this edition, the book is an extensive guide to game theory for undergraduate through graduate courses in economics, mathematics, computer science, engineering and life sciences, and will also serve as useful reference for researchers.
Thiscollectionofproblemsisplannedasatextbookforuniversitycoursesinthe theoryofstochasticprocessesandrelatedspecialcourses. Theproblemsinthebook haveawidespectrumofthelevelofdif cultyandcanbeusefulforreaderswith variouslevelsofmasteringinthetheoryofstochasticprocesses. Togetherwithte- nicalandillustrativeproblemsintendedforbeginners,thebookcontainsanumber ofproblemsoftheoreticalnaturethatcanbeusefulforstudentsandundergraduate studentsthatpursueadvancedstudiesinthetheoryofstochasticprocessesandits- plications. Amongothers,theimportantaimofthebookistoprovideateachingstaff anef cienttoolforpreparingseminarstudies,tests,andexamsconcerninguniversity coursesinthetheoryofstochasticprocessesandrelatedtopics. Whilecomposingthe book,theauthorshavepartiallyusedthecollectionsofproblemsinprobabilityt- ory[16,65,75,83]. Also,someexercisesandproblemsfromthemonographsand textbooks[4,9,19,22,82]wereused. Atthesametime,alargepartofourproblem bookcontainsoriginalmaterial. Thebookisorganizedasfollows. Theproblemsarecollectedintochapters,each chapterbeingdevotedtoacertaintopic. Atthebeginningofeachchapter,theth- reticalgroundsforthecorrespondingtopicaregivenbrie ytogetherwiththelistof bibliography,whichthereadercanuseinordertostudythistopicinmoredetail. For themostoftheproblems,eitherhintsorcompletesolutions(oranswers)aregiven, andsomeoftheproblemsareprovidedwithbothhintsandsolutions(answers). H- ever,theauthorsdonotrecommendthatareaderusethehintssystematically,because solvingaproblemwithoutassistanceismuchmoreusefulthanusingaready-made idea. Somestatementsthathaveaparticulartheoreticalinterestareformulatedon theoreticalgrounds,andtheirproofsareformulatedasproblemsforthereader. Such problemsaresuppliedwitheithercompletesolutionsordetailedhints. Inordertoworkwiththeproblembookef ciently,areadershouldbeacquainted withprobabilitytheory,calculus,andmeasuretheorywithinthescopeofresp- tiveuniversity courses. Standard notions, suchas random variable, measurability, independence, Lebesgue measure and integral, and so on are used without ad- tionaldiscussion. Allthenewnotionsandstatementsrequiredforsolvingthepr- lemsaregiveneitherontheoreticalgroundsorintheformulationsoftheproblems vii viii Preface straightforwardly. However,sometimesanotionisusedinthetextbeforeitsformal de nition. Forinstance,theWienerandPoissonprocessesareprocesseswithin- pendentincrementsandthusareformallyintroducedinaTheoreticalgroundsfor Chapter5,buttheseprocessesareusedwidelyintheproblemsofChapters2to4. Theauthorsrecommendthatareaderwhocomestoanunknownnotionorobject usetheIndexinorderto ndthecorrespondingformalde nition. Thesamerec- mendationconcernssomestandardabbreviationsandsymbolslistedattheendofthe book. Someproblemsinthebookformcycles:solutionstooneofthemaregrounded onstatementsofothersoronauxiliaryconstructionsdescribedinsomepreceding solutions. Sometimes,onthecontrary,itisproposedtoprovethesamestatement withindifferentproblemsusingessentiallydifferenttechniques. Theauthorsrec- mendareaderpayspeci cattentiontothesefruitfulinternallinksbetweenvarious topicsofthetheoryofstochasticprocesses. Everypartofthebookwascomposedsubstantiallybyoneauthor. Chapters1-6, and16arecomposedbyA. Kulik,Chapters7,12-15,18,and19byYu. Mishura, Chapters 8-10 by A. Pilipenko, Chapter 17 by A. Kukush, and Chapter 20 by D. Gusak. Chapter11waspreparedjointlybyD. GusakandA. Pilipenko. Atthe sametime,everyauthorhasmadeacontributiontootherpartsofthebookbyprop- ingseparateproblemsorcyclesofproblems,improvingpreliminaryversionsoft- oreticalgrounds,andeditingthe naltext. The authors would like to express their deep gratitude to M. Portenko and A. Ivanovfortheircarefulreadingofapreliminaryversionofthebookandva- ablecommentsthatledtosigni cantimprovementofthetext. Theauthorsarealso gratefultoT. Yakovenko,G. Shevchenko,O. Soloveyko, Yu. Kartashov, Yu. K- menko,A. Malenko,andN. Ryabovafortheirassistanceintranslation,preparing lesandpictures,andcomposingthesubjectindexandreferences. Thetheoryofstochasticprocessesisanextendeddiscipline,andtheauthors- derstandthattheproblembookinitscurrentformmaycausecriticalremarksfrom readers,concerningeitherthestructureofthebookorthecontentofseparatech- ters. Whilepublishingtheproblembookinitscurrentform,theauthorsareopenfor remarks,comments,andpropositions,andexpressinadvancetheirgratitudetoall theircorrespondents. Kyiv DmytroGusak December2008 AlexanderKukush AlexeyKulik YuliyaMishura AndreyPilipenko Contents 1 De?nition of stochastic process. Cylinder?-algebra, ?nite-dimensional distributions, the Kolmogorov theorem...1 Theoreticalgrounds ...1 Bibliography...3 Problems...3 Hints...7 AnswersandSolutions...9 2 Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions...11 Theoreticalgrounds ...11 Bibliography...13 Problems...13 Hints...16 AnswersandSolutions...17 3 Trajectories. Modi?cations. Filtrations...21 Theoreticalgrounds ...21 Bibliography...24 Problems...24 Hints...29 AnswersandSolutions...31 4 Continuity. Differentiability. Integrability...33 Theoreticalgrounds ...33 Bibliography...34 Problems...34 Hints...38 AnswersandSolutions...40 ix x Contents 5 Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures...
Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to p- vide students and researchers with an introduction to statistical techniques for the ana- sis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous obser- tions from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data an- ysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text.
The present volume gives a systematic treatment of potential functions. It takes its origin in two courses, one elementary and one advanced, which the author has given at intervals during the last ten years, and has a two-fold purpose: first, to serve as an introduction for students whose attainments in the Calculus include some knowledge of partial derivatives and multiple and line integrals; and secondly, to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications, or to the periodical literature of the day. It is inherent in the nature of the subject that physical intuition and illustration be appealed to freely, and this has been done. However, that the book may present sound ideals to the student, and in order also serve the mathematician, both for purposes of reference and as a basis for further developments, the proofs have been given by rigorous methods. This has led, at a number of points, to results either not found elsewhere, or not readily accessible. Thus, Chapter IV contains a proof for the general regular region of the divergence theorem (Gauss', or Green's theorem) on the reduction of volume to surface integrals. The treatment of the fundamental existence theorems in Chapter XI by means of integral equations meets squarely the difficulties incident to .the discontinuity of the kernel, and the same chapter gives an account of the most recent developments with respect to the Dirichlet problem."
The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization. |
You may like...
Italian Yearbook of Human Rights 2019
Centro di Ateneo per i Diritti Umani
Hardcover
R2,403
Discovery Miles 24 030
The Second Best Bed - Shakespeare's Will…
Joyce Rogers
Hardcover
Let's play, Mom! - Children's Book
Shelley Admont, Kidkiddos Books
Hardcover
R659
Discovery Miles 6 590
|