![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Biane, Philippe: Non-commutative stochastic calculus.-Voiculescu, Dan-Virgil: Lectures on free probability.- Guionnet, Alice: Large random matrices: Lectures on macroscopic asymptotics. "
On behalf of those of us who in various ways have con tributed to this volume, and on behalf of all of his colleagues, students and friends throughout the world-wide scientific com munity, we dedicate this volume to Gopinath Kallianpur as a tribute to his work and in appreciation for the insights which he has so graciously and generously offered, and continues to offer, to all of us. Stochastic Processes contains 41 articles related to and frequently influ enced by Kallianpur's work. We regret that space considerations prevented us from including contributions from his numerous colleagues (at North Carolina, lSI, Minnesota, Michigan), former students, co-authors and other eminent scientists whose work is akin to Kallianpur's. This would have taken several more volumes All articles have been refereed, and for their valuable assistance in this we thank many of the contributing authors, as well as: R. Bradley, M.H.A. Davis, R. Davis, J. Hawkins, J. Horowitz, C. Houdre, N.C. Jain, C. Ji, P. Kokoszka, T. Kurtz, K.S. Lau, W. Linde, D. Monrad, D. Stroook, D. Surgailis and S. Yakowitz. We also thank June Maxwell for editorial assistance, Peggy Ravitch for help with the production of the volume, and Lisa Brooks for secretarial assistance. Finally, we are indebted to Dr. Martin Gilchrist, the Statistics editor, and the Springer editorial board for their excellent cooperation and enthusiastic support throughout this project."
During the of Fall 1991, The Centre de Recerca Matematica, a research institute sponsored by the Institut d'Estudis Catalans, devoted a quarter to the study of stochastic analysis. Prominent workers in this field visited the Center from all over the world for periods ranging from a few days to several weeks. To take advantage of the presence in Barcelona of so many special ists in stochastic analysis, we organized a workshop on the subject in Sant Feliu de Guixols (Girona) that provided an opportunity for them to ex change information and ideas about their current work. Topics discussed included: Analysis on the Wiener space, Anticipating Stochastic Calculus and its Applications, Correlation Inequalities, Stochastic Flows, Reflected Semimartingales, and others. This volume contains a refereed selection of contributions from some of the participants in this workshop. We are deeply indebted to the authors of the articles for these exposi tions of their valuable research contributions. We also would like to thank all the referees for their helpful advice in making the volume a reflection of the dynamic interchange that characterized the workshop. The success of the Seminar was due essentially to the enthusiasm and stimulating discus sions of all the participants in an informal and pleasant atmosphere. To all of them our warm gratitude."
From Markov Jump Processes to Spatial Queues aims to develop a unified theory of spatial queues that yields concrete results for the performance analysis of mobile communication networks. A particular objective is to develop the most natural generalization of existing concepts (e.g. the BMAP) toward the needs of mobile communication networks. To these belong the spatial distribution of batch arrivals and users in the system as well as time-inhomogeneous (e.g. periodic) arrival intensities and user movements. One of the major recent challenges for the stochastic modelling of communication systems is the emergence of wireless networks, which are used by more and more subscribers today. The main new feature of those, which is not covered by classical queuing theory, clearly is the importance of the user location within the area that is served by the base stations of the network. In the framework of queuing theory, this opens up the natural extension of classical queuing models towards queues with a structured space in which users are served. The present book is intended to introduce this extension under the name of spatial queues. The main point of view and the general approach will be that of Markov jump processes. We start with a closer look into the theory. Then we present new results for the theory of stochastic processes as well as for classical queuing theory. Finally we introduce the new concepts of spatial Markovian arrival processes and spatial queues. The main text is divided into three parts. The first part provides a new presentation of the theory of Markov jump processes. We derive a number of new results, especially for time-inhomogeneous processes, which have been neglected too much in the current textbooks on stochastic processes. For the first time, the class of Markov-additive jump processes is analysed in detail. This extends and unifies all Markovian arrival processes that have been proposed up to now (including arrivals for fluid queues) and provides a foundation for the subsequent introduction of spatial Markovian arrival processes. The second part contains new results for classical queues with BMAP input. These include the first explicit formulae for the distribution of periodic queues. The class of fluid Markovian arrival processes is introduced, and we give statistical estimates for the parameters of a BMAP. In the third part, the concepts of spatial Markovian arrival
processes (abbreviated: SMAPs) and spatial queues are introduced.
After that, periodic spatial Markovian queues are analysed as a
model for the cells of a wireless communication network.
The 3rd International ISAAC Congress took place from August 20 to 25, 2001 in Berlin, Germany, supported by the German Research Foundation (DFG), the city of Berlin through Investitionsbank Berlin and the Freie Universitiit Berlin. 10 ISAAC Awards were presented to young researchers in analysis its applications and computation from all over the world on the basis of financial support from Siemens, Daimler Crysler, Motorola and the Berlin Mathematical Society and book gifts from Birkhauser Verlag, Elsevier, Kluwer Academic Publisher, Springer Verlag and World Scientific. The ISAAC is grateful to all these institutions, firms and publishers for their support. Due to the support from DFG and from Investitions bank Berlin many of the 362 registrated participants could be financially supported. Unfortunately the financial supports were granted too late to reach more people from former SU as the procedere for visa is still more than cumbersome and embassies are not at all flexible. Hence, a big part of the financial support could not be used and had to be returned. The 10 plenary lectures were 1. Antoniou, 1. Prigogine (Intern. Solvay Inst. Phys. Chem., Brussels): Irreversibility and the probabilistic description of unstable evolutions beyond the Hilbert space framework (read by 1. Antoniou), N.S. Bakhvalov, M.E. Eglit (Math. Mech. Dept., Lomonosov State Univ."
Analytic Extension is a mysteriously beautiful property of analytic functions. With this point of view in mind the related survey papers were gathered from various fields in analysis such as integral transforms, reproducing kernels, operator inequalities, Cauchy transform, partial differential equations, inverse problems, Riemann surfaces, Euler-Maclaurin summation formulas, several complex variables, scattering theory, sampling theory, and analytic number theory, to name a few. Audience: Researchers and graduate students in complex analysis, partial differential equations, analytic number theory, operator theory and inverse problems.
The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness)."
.."carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society
The author describes the stochastic (probabilistic) approach to the study of changes in the climate system. Climatic data and theoretical considerations suggest that a large part of climatic variation/variability has a random nature and can be analyzed using the theory of stochastic processes. This work summarizes the results of processing existing records of climatic parameters as well as appropriate theories: from the theory of random processes (based on the results of Kolmogorov and Yaglom) and Hasselmann's "stochastic climate model theory" to recently obtained results.
C. Doleans-Dade: Stochastic processes and stochastic differential equations.- A. Friedman: Stochastic differential equations and applications.- D.W. Stroock, S.R.S. Varadhan: Theory of diffusion processes.- G.C. Papanicolaou: Wave propagation and heat conduction in a random medium.- C. Dewitt Morette: A stochastic problem in Physics.- G.S. Goodman: The embedding problem for stochastic matrices.
"Potential Theory in Applied Geophysics" introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Behaviour of the scalar and vector potential and the nature of the solutions of these boundary value problems are shown along with the use of complex variables and conformal transformation, Green's theorem, Green's functions and its use in integral equation. Finite element and finite difference methods for two-dimensional potential problems are discussed in considerable detail. The analytical continuation of the potential field and inverse theory, used for the interpretation of potential field data, are also demonstrated.
This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.
Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field's widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
This volume contains the contributions of the participants to the Oslo- Silivri Workshop on Stochastic Analysis, held in Silivri, from July 18 to July 29, at the Nazlm Terzioglu Graduate Research Center of Istanbul University. 1994, There were three lectures: * Mathematical Theory 0/ Communication Networks by V. Anantharam, * State-Space Models 0/ the Term Structure o/Interest Rates, by D. Duffie, * Theory 0/ Capacity on the Wiener Space, by F. Hirsch. The main lectures are presented at the beginning of the volume. The contributing papers cover different domains varying from random fields to dis- tributions on infinite dimensional spaces. We would like to thank the following organizations for their financial sup- port: * VISTA, a research cooperation between the Norwegian Academy of Scineces and Letters and Den Norske Stats Oljeselskap A. S. (Statsoil). * Ecole Nationale Superieure des Telecommunications de Paris. In the summer of 1994 we lost our dear friend and colleague ALBERT BADRIKIAN. We are dedicating this volume to his memory. H. Korezlioglu, B. 0ksendal, A. S. Ustunel MATHEMATICAL THEORY OF COMMUNICATION NETWORKS VENKAT ANANTHARAM * EECS DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CA 94720 [email protected] Abstract We describe so me recent advances in the mathematical theory of com- munication networks.
This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black-Scholes formula for the pricing of derivatives in financial mathematics, the Kalman-Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.
As in the case of the two previous volumes published in 1986 and 1997, the purpose of this monograph is to focus the interplay between real (functional) analysis and stochastic analysis show their mutual benefits and advance the subjects. The presentation of each article, given as a chapter, is in a research-expository style covering the respective topics in depth. In fact, most of the details are included so that each work is essentially self contained and thus will be of use both for advanced graduate students and other researchers interested in the areas considered. Moreover, numerous new problems for future research are suggested in each chapter. The presented articles contain a substantial number of new results as well as unified and simplified accounts of previously known ones. A large part of the material cov ered is on stochastic differential equations on various structures, together with some applications. Although Brownian motion plays a key role, (semi-) martingale theory is important for a considerable extent. Moreover, noncommutative analysis and probabil ity have a prominent role in some chapters, with new ideas and results. A more detailed outline of each of the articles appears in the introduction and outline to assist readers in selecting and starting their work. All chapters have been reviewed."
This book is intended as a continuation of my book "Parametrix Method in the Theory of Differential Complexes" (see [291]). There, we considered complexes of differential operators between sections of vector bundles and we strived more than for details. Although there are many applications to for maximal generality overdetermined systems, such an approach left me with a certain feeling of dissat- faction, especially since a large number of interesting consequences can be obtained without a great effort. The present book is conceived as an attempt to shed some light on these new applications. We consider, as a rule, differential operators having a simple structure on open subsets of Rn. Currently, this area is not being investigated very actively, possibly because it is already very highly developed actively (cf. for example the book of Palamodov [213]). However, even in this (well studied) situation the general ideas from [291] allow us to obtain new results in the qualitative theory of differential equations and frequently in definitive form. The greater part of the material presented is related to applications of the L- rent series for a solution of a system of differential equations, which is a convenient way of writing the Green formula. The culminating application is an analog of the theorem of Vitushkin [303] for uniform and mean approximation by solutions of an elliptic system. Somewhat afield are several questions on ill-posedness, but the parametrix method enables us to obtain here a series of hitherto unknown facts.
Written with students and professors in mind, Analysis of Queues: Methods and Applications combines coverage of classical queueing theory with recent advances in studying stochastic networks. Exploring a broad range of applications, the book contains plenty of solved problems, exercises, case studies, paradoxes, and numerical examples. In addition to the standard single-station and single class discrete queues, the book discusses models for multi-class queues and queueing networks as well as methods based on fluid scaling, stochastic fluid flows, continuous parameter Markov processes, and quasi-birth-and-death processes, to name a few. It describes a variety of applications including computer-communication networks, information systems, production operations, transportation, and service systems such as healthcare, call centers and restaurants.
In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems. This is due to the interaction of approximation theoretical techniques with classical potential theory (more precisely, the theory of logarithmic potentials, which is directly related to polynomials and to problems in the plane or on the real line). Most of the applications are based on an exten sion of classical logarithmic potential theory to the case when there is a weight (external field) present. The list of recent developments is quite impressive and includes: creation of the theory of non-classical orthogonal polynomials with re spect to exponential weights; the theory of orthogonal polynomials with respect to general measures with compact support; the theory of incomplete polynomials and their widespread generalizations, and the theory of multipoint Pade approximation. The new approach has produced long sought solutions for many problems; most notably, the Freud problems on the asymptotics of orthogonal polynomials with a respect to weights of the form exp(-Ixl ); the "l/9-th" conjecture on rational approximation of exp(x); and the problem of the exact asymptotic constant in the rational approximation of Ixl. One aim of the present book is to provide a self-contained introduction to the aforementioned "weighted" potential theory as well as to its numerous applications. As a side-product we shall also fully develop the classical theory of logarithmic potentials."
This book presents important recent developments in mathematical and computational methods used in impedance imaging and the theory of composite materials. By augmenting the theory with interesting practical examples and numerical illustrations, the exposition brings simplicity to the advanced material. An introductory chapter covers the necessary basics. An extensive bibliography and open problems at the end of each chapter enhance the text.
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Mathematical sciences are contributing more and more to advances in life science research, a trend that will grow in the future. Realizing that the mathematical sciences can be critical to many areas of biomedical imaging, we organized a three-day minicourse on mathema- cal modelling in biomedical imaging at the Institute Henri Poincar'einParis in March 2007. Prominent mathematicians and biomedical researchers were paired to review the state-of-the-art in the subject area and to share mat- maticalinsightsregardingfutureresearchdirectionsinthisgrowingdiscipline. The speakers gave presentations on hot topics including electromagnetic brain activity, time-reversal techniques, elasticity imaging, infrared thermal tomography,acoustic radiationforce imaging, electrical impedance and m- netic resonance electrical impedance tomographies. Indeed, they contributed to this volume with original chapters to give a wider audience the bene?t of their talks and their thoughts on the ?eld. This volume is devoted to providing an exposition of the promising - alytical and numerical techniques for solving important biomedical imaging problems and to piquing interest in some of the most challenging issues. We hope that it will stimulate much needed progress in the directions that were described during the course. The biomedical imaging problems addressed in this volume trigger the investigation of interesting and di?cult problems in various branches of mathematics including partialdi?erential equations, h- monic analysis, complex analysis, numerical analysis, optimization, image analysis, and signal theory. The partial support o?ered by the ANR project EchoScan (AN-06- Blan-0089) is acknowledged. We also thank the sta? at the Institute Henri Poincar' e.
This book is an introduction to financial mathematics. It is intended for graduate students in mathematics and for researchers working in academia and industry. The focus on stochastic models in discrete time has two immediate benefits. First, the probabilistic machinery is simpler, and one can discuss right away some of the key problems in the theory of pricing and hedging of financial derivatives. Second, the paradigm of a complete financial market, where all derivatives admit a perfect hedge, becomes the exception rather than the rule. Thus, the need to confront the intrinsic risks arising from market incomleteness appears at a very early stage. The first part of the book contains a study of a simple one-period model, which also serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of financial risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. This third revised and extended edition now contains more than one hundred exercises. It also includes new material on risk measures and the related issue of model uncertainty, in particular a new chapter on dynamic risk measures and new sections on robust utility maximization and on efficient hedging with convex risk measures.
The developmentsin the recent yearsof the potential theoryemphasized a classof functions larger than that of excessive functions (i.e. the positive superharmonic functionsfromtheclassicalpotentialtheoryassociatedwiththeLaplaceoperator), namely the strongly supermedian functions. It turns out that a positive Borel function will be strongly supermedian if and only if it is the in?mum of all its excessive majorants. Apparently, these functions have been introduced by J.F. Mertens and then they have been studied mainly by P.A. Meyer, G. Mokobodzki, D. Feyel and recently by P.J. Fitzsimmons and R.K. Getoor. The aimofthis bookisamongothersto developa potential theoryappropriate to this new class of functions. Although our methods are analytical, we present also the probabilistic counterparts from the Markov processes theory. The natural frame in which this theory is settled is given by a sub-Markovian resolvent of kernels on a Radon measurable space. After a possible extension of the space, such a resolvent becomes that one associated with a right process on a Radon topological space, not necessary locally compact and without existing a reference measure. Intimately related to the excessive functions we present certain basic tools of the theory: the Ray topology and compacti?cation, the ?ne carrier and the reduction operation on measurable sets. We examine di?erent types of negligible sets with respect to a ?nite measure ?: the ?-polar, ?-semipolar and ?-mince sets. We take advantage of the cone of potentials structure for both excessive functions and measures |
You may like...
Handbook of Data Science with Semantic…
Archana Patel, Narayan C Debnath
Hardcover
R8,041
Discovery Miles 80 410
Innovations in Soft Computing and…
Jayeeta Chattopadhyay, Rahul Singh, …
Hardcover
R4,042
Discovery Miles 40 420
Formal Concept Analysis of Social…
Rokia Missaoui, Sergei Obiedkov, …
Hardcover
R3,311
Discovery Miles 33 110
Mass Intellectuality and Democratic…
Joss Winn, Richard Hall
Hardcover
R4,312
Discovery Miles 43 120
|