![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
A volume of this nature containing a collection of papers has been brought out to honour a gentleman - a friend and a colleague - whose work has, to a large extent, advanced and popularized the use of stochastic point processes. Professor Srinivasan celebrated his sixt~ first 1:!irth d~ on December 16,1990 and will be retiring as Professor of Applied Mathematics from the Indian Institute of Technolo~, Madras on June 30,1991. In view of his outstanding contributions to the theor~ and applications of stochastic processes over a time span of thirt~ ~ears, it seemed appropriate not to let his birth d~ and retirement pass unnoticed. A s~posium in his honour and the publication of the proceedings appeared to us to be the most natural and sui table ~ to mark the occasion. The Indian Societ~ for ProbabU it~ and Statistics volunteered to organize the S~posium as part of their XII Annual conference in Bomba~. We requested a number of long-time friends, colleagues and former students of Professor Srinivasan to contribute a paper preferabl~ in the area of stochastic processes and their applications. The positive response and the enthusiastic cooperation of these distinguished scientists have resulted in the present collection. The contributions to this volume are divided into four parts: Stochastic Theor~ (2 articles), P~sics (6 articles), Biolo~ (4 articles) and Operations Research (12 articles). In addition the ke~note address delivered b~ Professor Srinivasan in the S~posium is also included.
Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles: Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant measures for nonlinear stochastic differential equations.- Y. Kifer: Large deviationsfor random expanding maps.- P. Thieullen: Generalisation du theoreme de Pesin pour l' -entropie.- S.T. Ariaratnam, W.-C. Xie: Lyapunov exponents in stochastic structural mechanics.- F. Colonius, W. Kliemann: Lyapunov exponents of control flows.
Project planning, scheduling, and control are regularly used in business and the service sector of an economy to accomplish outcomes with limited resources under critical time constraints. To aid in solving these problems, network-based planning methods have been developed that now exist in a wide variety of forms, cf. Elmaghraby (1977) and Moder et al. (1983). The so-called "classical" project networks, which are used in the network techniques CPM and PERT and which represent acyclic weighted directed graphs, are able to describe only projects whose evolution in time is uniquely specified in advance. Here every event of the project is realized exactly once during a single project execution and it is not possible to return to activities previously carried out (that is, no feedback is permitted). Many practical projects, however, do not meet those conditions. Consider, for example, a production process where some parts produced by a machine may be poorly manufactured. If an inspection shows that a part does not conform to certain specifications, it must be repaired or replaced by a new item. This means that we have to return to a preceding stage of the production process. In other words, there is feedback. Note that the result of the inspection is that a certain percentage of the parts tested do not conform. That is, there is a positive probability (strictly less than 1) that any part is defective.
These proceedings of the workshop on quantum probability held in Heidelberg, September 26-30, 1988 contains a representative selection of research articles on quantum stochastic processes, quantum stochastic calculus, quantum noise, geometry, quantum probability, quantum central limit theorems and quantum statistical mechanics.
Based on the proceedings of the International Conference on Stochastic Partial Differential Equations and Applications-V held in Trento, Italy, this illuminating reference presents applications in filtering theory, stochastic quantization, quantum probability, and mathematical finance and identifies paths for future research in the field. Stochastic Partial Differential Equations and Applications analyzes recent developments in the study of quantum random fields, control theory, white noise, and fluid dynamics. It presents precise conditions for nontrivial and well-defined scattering, new Gaussian noise terms, models depicting the asymptotic behavior of evolution equations, and solutions to filtering dilemmas in signal processing. With contributions from more than 40 leading experts in the field, Stochastic Partial Differential Equations and Applications is an excellent resource for pure and applied mathematicians; numerical analysts; mathematical physicists; geometers; economists; probabilists; computer scientists; control, electrical, and electronics engineers; and upper-level undergraduate and graduate students in these disciplines.
The Second Silivri Workshop functioned as a short summer school and a working conference, producing lecture notes and research papers on recent developments of Stochastic Analysis on Wiener space. The topics of the lectures concern short time asymptotic problems and anticipative stochastic differential equations. Research papers are mostly extensions and applications of the techniques of anticipative stochastic calculus.
This text introduces at a moderate speed and in a thorough way the basic concepts of the theory of stochastic integrals and Ito calculus for sem i martingales. There are many reasons to study this subject. We are fascinated by the contrast between general measure theoretic arguments and concrete probabilistic problems, and by the own flavour of a new differential calculus. For the beginner, a lot of work is necessary to go through this text in detail. As areward it should enable her or hirn to study more advanced literature and to become at ease with a couple of seemingly frightening concepts. Already in this introduction, many enjoyable and useful facets of stochastic analysis show up. We start out having a glance at several elementary predecessors of the stochastic integral and sketching some ideas behind the abstract theory of semimartingale integration. Having introduced martingales and local martingales in chapters 2 - 4, the stochastic integral is defined for locally uniform limits of elementary processes in chapter S. This corresponds to the Riemann integral in one-dimensional analysis and it suffices for the study of Brownian motion and diffusion processes in the later chapters 9 and 12."
The book provides an introduction to advanced topics in stochastic processes and related stochastic analysis, and combines them with a sound presentation of the fundamentals of financial mathematics. It is wide-ranging in content, while at the same time placing much emphasis on good readability, motivation, and explanation of the issues covered. Financial mathematical topics are first introduced in the context of discrete time processes and then transferred to continuous-time models. The basic construction of the stochastic integral and the associated martingale theory provide fundamental methods of the theory of stochastic processes for the construction of suitable stochastic models of financial mathematics, e.g. using stochastic differential equations. Central results of stochastic analysis such as the Itô formula, Girsanov's theorem and martingale representation theorems are of fundamental importance in financial mathematics, e.g. for the risk-neutral valuation formula (Black-Scholes formula) or the question of the hedgeability of options and the completeness of market models. Chapters on the valuation of options in complete and incomplete markets and on the determination of optimal hedging strategies conclude the range of topics. Advanced knowledge of probability theory is assumed, in particular of discrete-time processes (martingales, Markov chains) and continuous-time processes (Brownian motion, Lévy processes, processes with independent increments, Markov processes). The book is thus suitable for advanced students as a companion reading and for instructors as a basis for their own courses.This book is a translation of the original German 1st edition Stochastische Prozesse und Finanzmathematik by Ludger Rüschendorf, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com) and in a subsequent editing, improved by the author. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
This book summarizes the developments in stochastic analysis and estimation. It presents novel applications to practical problems in mechanical systems. The main aspects of the course are random vibrations of discrete and continuous systems, analysis of nonlinear and parametric systems, stochastic modelling of fatigue damage, parameter estimation and identification with applications to vehicle road systems and process simulations by means of autoregressive models. The contributions will be of interest to engineers and research workers in industries and universities who want first hand information on present trends and problems in this topical field of engineering dynamics.
The second edition has not deviated significantly from the first. The printing of this edition, however, has allowed us to make a number of corrections which escaped our scrutiny at the time of the first printing, and to generally improve and tighten our presentation of the material. Many of these changes were suggested to us by colleagues and readers and their kindness in doing so is greatly appreciated. Delft, The Netherlands and P. A. Ruymgaart Buffalo, New York, December, 1987 T. T. Soong Preface to the First Edition Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but as all also in the social sciences, biological sciences, medical sciences, as well other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters."
The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.
The volume comprises eleven survey papers based on survey lectures delivered at the Conference in Prague in July 1987, which covered various facets of potential theory, including its applications in other areas. The survey papers deal with both classical and abstract potential theory and its relations to partial differential equations, stochastic processes and other branches such as numerical analysis and topology. A collection of problems from potential theory, compiled on the occasion of the conference, is included, with additional commentaries, in the second part of this volume.
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. TeichmA1/4ller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook and of a research monograph: it is the first introduction to the subject available in English, contains nearly a hundred exercises, a survey of the subject as well as an extensive bibliography and, finally, a list of open problems.
The Latin American School of Mathematics (ELAM) is one of the most important mathematical events in Latin America. It has been held every other year since 1968 in a different country of the region, and its theme varies according to the areas of interest of local research groups. The subject of the 1986 school was Partial Differential Equations with emphasis on Microlocal Analysis, Scattering Theory and the applications of Nonlinear Analysis to Elliptic Equations and Hamiltonian Systems.
This second BiBoS volume surveys recent developments in the theory
of stochastic processes. Particular attention is given to the
interaction between mathematics and physics.
The Fifth IFIP Working Conference on Stochastic Differential Systems continues the traditional line of previous conferences in Kyoto (1976), Vilnjus (1978), Visegrad (1980), and Marseille-Luminy (1984) and focuses on topics of present research in the field of stochastic differential systems. Particular emphasis is laid on infinite-dimensional stochastic problems and random fields, especially on stochastic partial differential equations. The volume includes contributions to the study of stochastic equations and diffusion and their approximation, large deviations and stability of perturbed systems, stochastic control theory and filtering. There are also contributions to the study of some special problems in martingale theory and stochastic calculus. This volume is of special interest to researchers in stochastic processes, random fields, and control theory.
Now in its second edition, this popular textbook on game theory is unrivalled in the breadth of its coverage, the thoroughness of technical explanations and the number of worked examples included. Covering non-cooperative and cooperative games, this introduction to game theory includes advanced chapters on auctions, games with incomplete information, games with vector payoffs, stable matchings and the bargaining set. This edition contains new material on stochastic games, rationalizability, and the continuity of the set of equilibrium points with respect to the data of the game. The material is presented clearly and every concept is illustrated with concrete examples from a range of disciplines. With numerous exercises, and the addition of a solution manual for instructors with this edition, the book is an extensive guide to game theory for undergraduate through graduate courses in economics, mathematics, computer science, engineering and life sciences, and will also serve as useful reference for researchers.
In many branches of science relevant observations are taken sequentially over time. Bayesian Analysis of Time Series discusses how to use models that explain the probabilistic characteristics of these time series and then utilizes the Bayesian approach to make inferences about their parameters. This is done by taking the prior information and via Bayes theorem implementing Bayesian inferences of estimation, testing hypotheses, and prediction. The methods are demonstrated using both R and WinBUGS. The R package is primarily used to generate observations from a given time series model, while the WinBUGS packages allows one to perform a posterior analysis that provides a way to determine the characteristic of the posterior distribution of the unknown parameters. Features Presents a comprehensive introduction to the Bayesian analysis of time series. Gives many examples over a wide variety of fields including biology, agriculture, business, economics, sociology, and astronomy. Contains numerous exercises at the end of each chapter many of which use R and WinBUGS. Can be used in graduate courses in statistics and biostatistics, but is also appropriate for researchers, practitioners and consulting statisticians. About the author Lyle D. Broemeling, Ph.D., is Director of Broemeling and Associates Inc., and is a consulting biostatistician. He has been involved with academic health science centers for about 20 years and has taught and been a consultant at the University of Texas Medical Branch in Galveston, The University of Texas MD Anderson Cancer Center and the University of Texas School of Public Health. His main interest is in developing Bayesian methods for use in medical and biological problems and in authoring textbooks in statistics. His previous books for Chapman & Hall/CRC include Bayesian Biostatistics and Diagnostic Medicine, and Bayesian Methods for Agreement.
This second BiBoS volume surveys recent developments in the theory
of stochastic processes. Particular attention is given to the
interaction between mathematics and physics.
|
You may like...
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,380
Discovery Miles 23 800
Geometry and Statistics, Volume 46
Frank Nielsen, Arni S.R. Srinivasa Rao, …
Hardcover
R6,194
Discovery Miles 61 940
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Data Science: Theory and Applications…
C.R. Rao, Arni S.R. Srinivasa Rao
Hardcover
R6,177
Discovery Miles 61 770
Ruin Probabilities - Smoothness, Bounds…
Yuliya Mishura, Olena Ragulina
Hardcover
R3,086
Discovery Miles 30 860
|