![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The volume comprises eleven survey papers based on survey lectures delivered at the Conference in Prague in July 1987, which covered various facets of potential theory, including its applications in other areas. The survey papers deal with both classical and abstract potential theory and its relations to partial differential equations, stochastic processes and other branches such as numerical analysis and topology. A collection of problems from potential theory, compiled on the occasion of the conference, is included, with additional commentaries, in the second part of this volume.
The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.
The Latin American School of Mathematics (ELAM) is one of the most important mathematical events in Latin America. It has been held every other year since 1968 in a different country of the region, and its theme varies according to the areas of interest of local research groups. The subject of the 1986 school was Partial Differential Equations with emphasis on Microlocal Analysis, Scattering Theory and the applications of Nonlinear Analysis to Elliptic Equations and Hamiltonian Systems.
The second edition has not deviated significantly from the first. The printing of this edition, however, has allowed us to make a number of corrections which escaped our scrutiny at the time of the first printing, and to generally improve and tighten our presentation of the material. Many of these changes were suggested to us by colleagues and readers and their kindness in doing so is greatly appreciated. Delft, The Netherlands and P. A. Ruymgaart Buffalo, New York, December, 1987 T. T. Soong Preface to the First Edition Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but as all also in the social sciences, biological sciences, medical sciences, as well other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters."
This book summarizes the developments in stochastic analysis and estimation. It presents novel applications to practical problems in mechanical systems. The main aspects of the course are random vibrations of discrete and continuous systems, analysis of nonlinear and parametric systems, stochastic modelling of fatigue damage, parameter estimation and identification with applications to vehicle road systems and process simulations by means of autoregressive models. The contributions will be of interest to engineers and research workers in industries and universities who want first hand information on present trends and problems in this topical field of engineering dynamics.
The Fifth IFIP Working Conference on Stochastic Differential Systems continues the traditional line of previous conferences in Kyoto (1976), Vilnjus (1978), Visegrad (1980), and Marseille-Luminy (1984) and focuses on topics of present research in the field of stochastic differential systems. Particular emphasis is laid on infinite-dimensional stochastic problems and random fields, especially on stochastic partial differential equations. The volume includes contributions to the study of stochastic equations and diffusion and their approximation, large deviations and stability of perturbed systems, stochastic control theory and filtering. There are also contributions to the study of some special problems in martingale theory and stochastic calculus. This volume is of special interest to researchers in stochastic processes, random fields, and control theory.
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. TeichmA1/4ller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook and of a research monograph: it is the first introduction to the subject available in English, contains nearly a hundred exercises, a survey of the subject as well as an extensive bibliography and, finally, a list of open problems.
This second BiBoS volume surveys recent developments in the theory
of stochastic processes. Particular attention is given to the
interaction between mathematics and physics.
This second BiBoS volume surveys recent developments in the theory
of stochastic processes. Particular attention is given to the
interaction between mathematics and physics.
Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a "hard nut to crack." The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.
This concise and up-to-date textbook provides an accessible introduction to the core concepts of nonlinear dynamics as well as its existing and potential applications. The book is aimed at students and researchers in all the diverse fields in which nonlinear phenomena are important. Since most tasks in nonlinear dynamics cannot be treated analytically, skills in using numerical simulations are crucial for analyzing these phenomena. The text therefore addresses in detail appropriate computational methods as well as identifying the pitfalls of numerical simulations. It includes numerous executable code snippets referring to open source Julia software packages. Each chapter includes a selection of exercises with which students can test and deepen their skills.
A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics are provided, specifically to systems of random equations and condition numbers of random matrices. Throughout the book, applications are illustrated from various areas of study such as statistics, genomics, and oceanography while other results are relevant to econometrics, engineering, and mathematical physics. The presented material is reinforced by end-of-chapter exercises that range in varying degrees of difficulty. Most fundamental topics are addressed in the book, and an extensive, up-to-date bibliography directs readers to existing literature for further study. Level Sets and Extrema of Random Processes and Fields is an excellent book for courses on probability theory, spatial statistics, Gaussian fields, and probabilistic methods in real computation at the upper-undergraduate and graduate levels. It is also a valuable reference for professionals in mathematics and applied fields such as statistics, engineering, econometrics, mathematical physics, and biology.
These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura for his continuous encouragement. My thanks also go to the small but resolute groups of.students, visitors and colleagues whose enthusiasm was a great source of encouragement. I am especially obliged to Dr. Martin Curie-Cohen and Dr. Crow for reading a large part eX the manuscript and making many valuable comments. Special gratitude is expressed to Miss Sumiko Imamiya for her patience and endurance and for her efficient preparation of the manuscript.
Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more.
Dedicated to one of the most outstanding researchers in the field of statistics, this volume in honor of C.R. Rao, on the occasion of his 100th birthday, provides a bird's-eye view of a broad spectrum of research topics, paralleling C.R. Rao's wide-ranging research interests. The book's contributors comprise a representative sample of the countless number of researchers whose careers have been influenced by C.R. Rao, through his work or his personal aid and advice. As such, written by experts from more than 15 countries, the book's original and review contributions address topics including statistical inference, distribution theory, estimation theory, multivariate analysis, hypothesis testing, statistical modeling, design and sampling, shape and circular analysis, and applications. The book will appeal to statistics researchers, theoretical and applied alike, and PhD students. Happy Birthday, C.R. Rao!
Crisscross, zigzag, bowtie, devil, angel, or star: which are the longest, the shortest, the strongest, and the weakest lacings? Pondering the mathematics of shoelaces, the author paints a vivid picture of the simple, beautiful, and surprising characterizations of the most common shoelace patterns. The mathematics involved is an attractive mix of combinatorics and elementary calculus. This book will be enjoyed by mathematically minded people for as long as there are shoes to lace. Burkard Polster is a well-known mathematical juggler, magician, origami expert, bubble-master, shoelace charmer, and 'Count von Count' impersonator. His previous books include ""A Geometrical Picture Book"", ""The Mathematics of Juggling"", and ""QED: Beauty in Mathematical Proof"". Want to learn more about knot theory? See ""The Knot Book"" by Colin Adams and ""Knots and Links"" by Dale Rolfsen. To read a review published in the ""Gazette of the Australian Mathematical Society"", click here. |
![]() ![]() You may like...
Dynamical Symmetries for Nanostructures…
Konstantin Kikoin, Mikhail Kiselev, …
Hardcover
R3,075
Discovery Miles 30 750
Fluid Dynamics - Part 1: Classical Fluid…
Anatoly I. Ruban, Jitesh S. B. Gajjar
Hardcover
R2,545
Discovery Miles 25 450
Diffuse Scattering and Defect Structure…
Reinhard B. Neder, Thomas Proffen
Hardcover
R3,681
Discovery Miles 36 810
Geometric and Electronic Properties of…
Ngoc Thanh Thuy Tran, Shih-Yang Lin, …
Paperback
R2,041
Discovery Miles 20 410
Characterization Techniques of Glasses…
Jesus Ma Rincon, Maximina Romero
Hardcover
R4,726
Discovery Miles 47 260
|