Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
This volume contains papers presented during a four-day Workshop that took place at Rutgers University from 29 April to 2 May, 1991. The purpose of this workshop was to promote interaction among specialists in these areas byproviding for all an up-to-date picture of current issues and outstanding problems. The topics covered include singular stochasticcontrol, queuing networks, the mathematical theory of stochastic optimization and filtering, adaptive control and the estimation for random fields and its connections with simulated annealing, statistical mechanics, and combinatorial optimization.
The DMV seminar "Stochastische Approximation und Optimierung zufalliger Systeme" was held at Blaubeuren, 28. 5. -4. 6. 1989. The goal was to give an approach to theory and application of stochas tic approximation in view of optimization problems, especially in engineering systems. These notes are based on the seminar lectures. They consist of three parts: I. Foundations of stochastic approximation (H. Walk); n. Applicational aspects of stochastic approximation (G. PHug); In. Applications to adaptation: ugorithms (L. Ljung). The prerequisites for reading this book are basic knowledge in probability, mathematical statistics, optimization. We would like to thank Prof. M. Barner and Prof. G. Fischer for the or ganization of the seminar. We also thank the participants for their cooperation and our assistants and secretaries for typing the manuscript. November 1991 L. Ljung, G. PHug, H. Walk Table of contents I Foundations of stochastic approximation (H. Walk) 1 Almost sure convergence of stochastic approximation procedures 2 2 Recursive methods for linear problems 17 3 Stochastic optimization under stochastic constraints 22 4 A learning model; recursive density estimation 27 5 Invariance principles in stochastic approximation 30 6 On the theory of large deviations 43 References for Part I 45 11 Applicational aspects of stochastic approximation (G. PHug) 7 Markovian stochastic optimization and stochastic approximation procedures 53 8 Asymptotic distributions 71 9 Stopping times 79 1O Applications of stochastic approximation methods 80 References for Part II 90 III Applications to adaptation algorithms (L."
This volume includes a selection of papers presented at the GAMM/ IFIP-Workshop on IIStochastic Optimization: Numerical Methods and ll Technical Applications , held at the Federal Armed Forces Univer- sity Munich, May 29-31, 1990. The objective of this meeting was to bring together scientists from Stochastic Programming and from those Engineering areas, where Mathematical Programming models are common tools, as e.g. Optimal structural Design, Power Dispatch, Acid Rain Abatement etc .. Hence, the aim was to discuss the effects of taking into account the in- herent randomness of some data of these problems, i.e. considering Stochastic Programming instead of Mathematical Programming models in order to get solutions being more reliable, but not more expen- sive. An international programme committe2 was formed which included H.A. Eschenauer (Germany) P. Kall (Switzerland) K. Marti (Germany, Chairman) J. Mayer (Hungary) G.I. Schueller (Austria) Although the number of participants had to be small for technical reasons, the area covered by the lectures during the workshop was rather broad. It contains theoretical insight into stochastic pro- gramming problems, new computational approaches, analyses of known solution methods, and applications in such very different technical fields as ecology, energy demands, and optimal reliability of me- chanical structures. In particular, the applied presentation also pointed to several open methodological problems.
The four chapters of this volume, written by prominent workers in the field of adaptive processing and linear prediction, address a variety of problems, ranging from adaptive source coding to autoregressive spectral estimation. The first chapter, by T.C. Butash and L.D. Davisson, formulates the performance of an adaptive linear predictor in a series of theorems, with and without the Gaussian assumption, under the hypothesis that its coefficients are derived from either the (single) observation sequence to be predicted (dependent case) or a second, statistically independent realisation (independent case). The contribution by H.V. Poor reviews three recently developed general methodologies for designing signal predictors under nonclassical operating conditions, namely the robust predictor, the high-speed Levinson modeling, and the approximate conditional mean nonlinear predictor. W. Wax presents the key concepts and techniques for detecting, localizing and beamforming multiple narrowband sources by passive sensor arrays. Special coding algorithms and techniques based on the use of linear prediction now permit high-quality voice reproduction at remorably low bit rates. The paper by A. Gersho reviews some of the main ideas underlying the algorithms of major interest today.
There are many ways of introducing the concept of probability in classical, i. e, deter ministic, physics. This work is concerned with one approach, known as "the method of arbitrary funetionJ. " It was put forward by Poincare in 1896 and developed by Hopf in the 1930's. The idea is the following. There is always some uncertainty in our knowledge of both the initial conditions and the values of the physical constants that characterize the evolution of a physical system. A probability density may be used to describe this uncertainty. For many physical systems, dependence on the initial density washes away with time. Inthese cases, the system's position eventually converges to the same random variable, no matter what density is used to describe initial uncertainty. Hopf's results for the method of arbitrary functions are derived and extended in a unified fashion in these lecture notes. They include his work on dissipative systems subject to weak frictional forces. Most prominent among the problems he considers is his carnival wheel example, which is the first case where a probability distribution cannot be guessed from symmetry or other plausibility considerations, but has to be derived combining the actual physics with the method of arbitrary functions. Examples due to other authors, such as Poincare's law of small planets, Borel's billiards problem and Keller's coin tossing analysis are also studied using this framework. Finally, many new applications are presented."
Entropy inequalities, correlation functions, couplings between stochastic processes are powerful techniques which have been extensively used to give arigorous foundation to the theory of complex, many component systems and to its many applications in a variety of fields as physics, biology, population dynamics, economics, ... The purpose of the book is to make theseand other mathematical methods accessible to readers with a limited background in probability and physics by examining in detail a few models where the techniques emerge clearly, while extra difficulties arekept to a minimum. Lanford's method and its extension to the hierarchy of equations for the truncated correlation functions, the v-functions, are presented and applied to prove the validity of macroscopic equations forstochastic particle systems which are perturbations of the independent and of the symmetric simple exclusion processes. Entropy inequalities are discussed in the frame of the Guo-Papanicolaou-Varadhan technique and of theKipnis-Olla-Varadhan super exponential estimates, with reference to zero-range models. Discrete velocity Boltzmann equations, reaction diffusion equations and non linear parabolic equations are considered, as limits of particles models. Phase separation phenomena are discussed in the context of Glauber+Kawasaki evolutions and reaction diffusion equations. Although the emphasis is onthe mathematical aspects, the physical motivations are explained through theanalysis of the single models, without attempting, however to survey the entire subject of hydrodynamical limits.
Claims reserving is central to the insurance industry. Insurance
liabilities depend on a number of different risk factors which need
to be predicted accurately. This prediction of risk factors and
outstanding loss liabilities is the core for pricing insurance
products, determining the profitability of an insurance company and
for considering the financial strength (solvency) of the company.
The interplay between the spectral theory of Schr-dinger operators and probabilistic considerations forms the main theme of these notes, written for the non-specialist reader and intended to provide a brief and elementaryintroduction to this field. An attempt is made to show basic ideas in statu nascendi and to follow their evaluation from simple beginnings through to more advanced results. The term "genetic" in the title refers to this proceedure. The author concentrates on 2 topics which, in the history of the subject, have been of major conceptual importance - on the one hand the Laplacian is a random medium and the left end of its spectrum (leading to large deviation problems for Brownian motion and the link to thenotion of entropy) and on the other, Schr-dinger operators with general ergodic potentials in one-dimensional space. Ideas and concepts are explained in the simplest, possible setting and by means of a few characteristic problems with heuristic arguments preceding rigorous proofs.
A volume of this nature containing a collection of papers has been brought out to honour a gentleman - a friend and a colleague - whose work has, to a large extent, advanced and popularized the use of stochastic point processes. Professor Srinivasan celebrated his sixt~ first 1:!irth d~ on December 16,1990 and will be retiring as Professor of Applied Mathematics from the Indian Institute of Technolo~, Madras on June 30,1991. In view of his outstanding contributions to the theor~ and applications of stochastic processes over a time span of thirt~ ~ears, it seemed appropriate not to let his birth d~ and retirement pass unnoticed. A s~posium in his honour and the publication of the proceedings appeared to us to be the most natural and sui table ~ to mark the occasion. The Indian Societ~ for ProbabU it~ and Statistics volunteered to organize the S~posium as part of their XII Annual conference in Bomba~. We requested a number of long-time friends, colleagues and former students of Professor Srinivasan to contribute a paper preferabl~ in the area of stochastic processes and their applications. The positive response and the enthusiastic cooperation of these distinguished scientists have resulted in the present collection. The contributions to this volume are divided into four parts: Stochastic Theor~ (2 articles), P~sics (6 articles), Biolo~ (4 articles) and Operations Research (12 articles). In addition the ke~note address delivered b~ Professor Srinivasan in the S~posium is also included.
Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles: Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant measures for nonlinear stochastic differential equations.- Y. Kifer: Large deviationsfor random expanding maps.- P. Thieullen: Generalisation du theoreme de Pesin pour l' -entropie.- S.T. Ariaratnam, W.-C. Xie: Lyapunov exponents in stochastic structural mechanics.- F. Colonius, W. Kliemann: Lyapunov exponents of control flows.
This book contains a collection of survey papers in the areas of modelling, estimation and adaptive control of stochastic systems describing recent efforts to develop a systematic and elegant theory of identification and adaptive control. It is meant to provide a fast introduction to some of the recent achievements. The book is intended for graduate students and researchers interested in statistical problems of control in general. Students in robotics and communication will also find it valuable. Readers are expected to be familiar with the fundamentals of probability theory and stochastic processes.
These proceedings of the workshop on quantum probability held in Heidelberg, September 26-30, 1988 contains a representative selection of research articles on quantum stochastic processes, quantum stochastic calculus, quantum noise, geometry, quantum probability, quantum central limit theorems and quantum statistical mechanics.
The Second Silivri Workshop functioned as a short summer school and a working conference, producing lecture notes and research papers on recent developments of Stochastic Analysis on Wiener space. The topics of the lectures concern short time asymptotic problems and anticipative stochastic differential equations. Research papers are mostly extensions and applications of the techniques of anticipative stochastic calculus.
This book begins with a historical survey of `generalized inverse Gaussian laws', in which the wartime contribution of Etienne Halphen is presented for the first time. The inverse Gaussian distribution, its properties, and its implications are set in a wide perspective. The concepts of inversion and inverse natural exponential functions are presented, together with an analysis of the `Tweedie' scale, of which the Gaussian distribution is an important special case. Chapter 2 concerns the basic theory of exponential functions, focusing on the inverse Gaussian Law. Chapter 3 is devoted to various characterization results, while Chapter 4 is concerned with the construction of multivariate distributions, and the relationship to simplex distributions, combinations, and finite mixtures. Chapter 5 introduces the concept of inverse natural exponential functions and Chapter 6 presents useful statistical results. Up-to-date research is presented in the form of exercises, a special chapter on characterizations is included, and a summary of statistical issues concerning estimation and interference are provided. Research workers will find inspiration for further investigations.
This text introduces at a moderate speed and in a thorough way the basic concepts of the theory of stochastic integrals and Ito calculus for sem i martingales. There are many reasons to study this subject. We are fascinated by the contrast between general measure theoretic arguments and concrete probabilistic problems, and by the own flavour of a new differential calculus. For the beginner, a lot of work is necessary to go through this text in detail. As areward it should enable her or hirn to study more advanced literature and to become at ease with a couple of seemingly frightening concepts. Already in this introduction, many enjoyable and useful facets of stochastic analysis show up. We start out having a glance at several elementary predecessors of the stochastic integral and sketching some ideas behind the abstract theory of semimartingale integration. Having introduced martingales and local martingales in chapters 2 - 4, the stochastic integral is defined for locally uniform limits of elementary processes in chapter S. This corresponds to the Riemann integral in one-dimensional analysis and it suffices for the study of Brownian motion and diffusion processes in the later chapters 9 and 12."
Project planning, scheduling, and control are regularly used in business and the service sector of an economy to accomplish outcomes with limited resources under critical time constraints. To aid in solving these problems, network-based planning methods have been developed that now exist in a wide variety of forms, cf. Elmaghraby (1977) and Moder et al. (1983). The so-called "classical" project networks, which are used in the network techniques CPM and PERT and which represent acyclic weighted directed graphs, are able to describe only projects whose evolution in time is uniquely specified in advance. Here every event of the project is realized exactly once during a single project execution and it is not possible to return to activities previously carried out (that is, no feedback is permitted). Many practical projects, however, do not meet those conditions. Consider, for example, a production process where some parts produced by a machine may be poorly manufactured. If an inspection shows that a part does not conform to certain specifications, it must be repaired or replaced by a new item. This means that we have to return to a preceding stage of the production process. In other words, there is feedback. Note that the result of the inspection is that a certain percentage of the parts tested do not conform. That is, there is a positive probability (strictly less than 1) that any part is defective.
This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefevre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes."
Based on the proceedings of the International Conference on Stochastic Partial Differential Equations and Applications-V held in Trento, Italy, this illuminating reference presents applications in filtering theory, stochastic quantization, quantum probability, and mathematical finance and identifies paths for future research in the field. Stochastic Partial Differential Equations and Applications analyzes recent developments in the study of quantum random fields, control theory, white noise, and fluid dynamics. It presents precise conditions for nontrivial and well-defined scattering, new Gaussian noise terms, models depicting the asymptotic behavior of evolution equations, and solutions to filtering dilemmas in signal processing. With contributions from more than 40 leading experts in the field, Stochastic Partial Differential Equations and Applications is an excellent resource for pure and applied mathematicians; numerical analysts; mathematical physicists; geometers; economists; probabilists; computer scientists; control, electrical, and electronics engineers; and upper-level undergraduate and graduate students in these disciplines.
The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.
The volume comprises eleven survey papers based on survey lectures delivered at the Conference in Prague in July 1987, which covered various facets of potential theory, including its applications in other areas. The survey papers deal with both classical and abstract potential theory and its relations to partial differential equations, stochastic processes and other branches such as numerical analysis and topology. A collection of problems from potential theory, compiled on the occasion of the conference, is included, with additional commentaries, in the second part of this volume.
The Latin American School of Mathematics (ELAM) is one of the most important mathematical events in Latin America. It has been held every other year since 1968 in a different country of the region, and its theme varies according to the areas of interest of local research groups. The subject of the 1986 school was Partial Differential Equations with emphasis on Microlocal Analysis, Scattering Theory and the applications of Nonlinear Analysis to Elliptic Equations and Hamiltonian Systems.
This book summarizes the developments in stochastic analysis and estimation. It presents novel applications to practical problems in mechanical systems. The main aspects of the course are random vibrations of discrete and continuous systems, analysis of nonlinear and parametric systems, stochastic modelling of fatigue damage, parameter estimation and identification with applications to vehicle road systems and process simulations by means of autoregressive models. The contributions will be of interest to engineers and research workers in industries and universities who want first hand information on present trends and problems in this topical field of engineering dynamics.
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. TeichmA1/4ller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook and of a research monograph: it is the first introduction to the subject available in English, contains nearly a hundred exercises, a survey of the subject as well as an extensive bibliography and, finally, a list of open problems.
The second edition has not deviated significantly from the first. The printing of this edition, however, has allowed us to make a number of corrections which escaped our scrutiny at the time of the first printing, and to generally improve and tighten our presentation of the material. Many of these changes were suggested to us by colleagues and readers and their kindness in doing so is greatly appreciated. Delft, The Netherlands and P. A. Ruymgaart Buffalo, New York, December, 1987 T. T. Soong Preface to the First Edition Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but as all also in the social sciences, biological sciences, medical sciences, as well other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters."
This book is an introduction to financial mathematics. It is intended for graduate students in mathematics and for researchers working in academia and industry. The focus on stochastic models in discrete time has two immediate benefits. First, the probabilistic machinery is simpler, and one can discuss right away some of the key problems in the theory of pricing and hedging of financial derivatives. Second, the paradigm of a complete financial market, where all derivatives admit a perfect hedge, becomes the exception rather than the rule. Thus, the need to confront the intrinsic risks arising from market incomleteness appears at a very early stage. The first part of the book contains a study of a simple one-period model, which also serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of financial risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. This third revised and extended edition now contains more than one hundred exercises. It also includes new material on risk measures and the related issue of model uncertainty, in particular a new chapter on dynamic risk measures and new sections on robust utility maximization and on efficient hedging with convex risk measures. |
You may like...
Modeling Uncertainty - An Examination of…
Moshe Dror, Pierre L'Ecuyer, …
Hardcover
R5,605
Discovery Miles 56 050
Optimization, Dynamics and Economic…
Engelbert J. Dockner, R.F. Hartl, …
Hardcover
R2,425
Discovery Miles 24 250
|