![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: * More than 200 examples and 600 end-of-chapter exercises * A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra * Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus * Introductions to mathematics as needed in order to suit readers at many mathematical levels * A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
This book is a final year undergraduate text on stochastic processes, a tool used widely by statisticians and researchers working in the mathematics of finance. The book will give a detailed treatment of conditional expectation and probability, a topic which in principle belongs to probability theory, but is essential as a tool for stochastic processes. Although the book is a final year text, the author has chosen to use exercises as the main means of explanation for the various topics, and the book will have a strong self-study element. The author has concentrated on the major topics within stochastic analysis: Stochastic Processes, Markov Chains, Spectral Theory, Renewal Theory, Martingales and Itô Stochastic Processes.
Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.
In many real-world applications, the problems with the data used for scheduling such as processing times, set-up times, release dates or due dates is not exactly known before applying a specific solution algorithm which restricts practical aspects of scheduling theory. During the last decades, several approaches have been developed for sequencing and scheduling with inaccurate data, depending on whether the data is given as random numbers, fuzzy numbers or whether it is uncertain (ie: it can take values from a given interval). This book considers the four major approaches for dealing with such problems: a stochastic approach, a fuzzy approach, a robust approach and a stability approach. Each of the four parts is devoted to one of these approaches. First, it contains a survey chapter on this subject, as well as between further chapters, presenting some recent research results in the particular area. The book provides the reader with a comprehensive and up-to-date introduction into scheduling with inaccurate data. The four survey chapters deal with scheduling with stochastic approaches, fuzzy job-shop scheduling, min-max regret scheduling problems and a stability approach to sequencing and scheduling under uncertainty. This book will be useful for applied mathematicians, students and PhD students dealing with scheduling theory, optimisation and calendar planning.
Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Ito formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.
Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Ito formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.
This book provides an accessible overview concerning the stochastic numerical methods inheriting long-time dynamical behaviours of finite and infinite-dimensional stochastic Hamiltonian systems. The long-time dynamical behaviours under study involve symplectic structure, invariants, ergodicity and invariant measure. The emphasis is placed on the systematic construction and the probabilistic superiority of stochastic symplectic methods, which preserve the geometric structure of the stochastic flow of stochastic Hamiltonian systems. The problems considered in this book are related to several fascinating research hotspots: numerical analysis, stochastic analysis, ergodic theory, stochastic ordinary and partial differential equations, and rough path theory. This book will appeal to researchers who are interested in these topics.
In many areas of human endeavor, the systems involved are not
available for direct measurement. Instead, by combining
mathematical models for a system's evolution with partial
observations of its evolving state, we can make reasonable
inferences about it. The increasing complexity of the modern world
makes this analysis and synthesis of high-volume data an essential
feature in many real-world problems.
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes - Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes - Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.
Dedicated to one of the most outstanding researchers in the field of statistics, this volume in honor of C.R. Rao, on the occasion of his 100th birthday, provides a bird's-eye view of a broad spectrum of research topics, paralleling C.R. Rao's wide-ranging research interests. The book's contributors comprise a representative sample of the countless number of researchers whose careers have been influenced by C.R. Rao, through his work or his personal aid and advice. As such, written by experts from more than 15 countries, the book's original and review contributions address topics including statistical inference, distribution theory, estimation theory, multivariate analysis, hypothesis testing, statistical modeling, design and sampling, shape and circular analysis, and applications. The book will appeal to statistics researchers, theoretical and applied alike, and PhD students. Happy Birthday, C.R. Rao!
Now in its second edition, this popular textbook on game theory is unrivalled in the breadth of its coverage, the thoroughness of technical explanations and the number of worked examples included. Covering non-cooperative and cooperative games, this introduction to game theory includes advanced chapters on auctions, games with incomplete information, games with vector payoffs, stable matchings and the bargaining set. This edition contains new material on stochastic games, rationalizability, and the continuity of the set of equilibrium points with respect to the data of the game. The material is presented clearly and every concept is illustrated with concrete examples from a range of disciplines. With numerous exercises, and the addition of a solution manual for instructors with this edition, the book is an extensive guide to game theory for undergraduate through graduate courses in economics, mathematics, computer science, engineering and life sciences, and will also serve as useful reference for researchers.
The book The E. M. Stein Lectures on Hardy Spaces is based on a graduate course on real variable Hardy spaces which was given by E.M. Stein at Princeton University in the academic year 1973-1974. Stein, along with C. Fefferman and G. Weiss, pioneered this subject area, removing the theory of Hardy spaces from its traditional dependence on complex variables, and to reveal its real-variable underpinnings. This book is based on Steven G. Krantz's notes from the course given by Stein. The text builds on Fefferman's theorem that BMO is the dual of the Hardy space. Using maximal functions, singular integrals, and related ideas, Stein offers many new characterizations of the Hardy spaces. The result is a rich tapestry of ideas that develops the theory of singular integrals to a new level. The final chapter describes the major developments since 1974. This monograph is of broad interest to graduate students and researchers in mathematical analysis. Prerequisites for the book include a solid understanding of real variable theory and complex variable theory. A basic knowledge of functional analysis would also be useful.
Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This Element provides a unified framework to handle these approaches via Markov chains. The authors consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties, and show how many state-of-the-art models for data generation fit into this framework. Indeed numerical simulations show that including stochastic layers improves the expressivity of the network and allows for generating multimodal distributions from unimodal ones. The Markov chains point of view enables the coupling of both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. The authors' framework establishes a useful mathematical tool to combine the various approaches.
This book is an introduction to stochastic analysis and quantitative finance; it includes both theoretical and computational methods. Topics covered are stochastic calculus, option pricing, optimal portfolio investment, and interest rate models. Also included are simulations of stochastic phenomena, numerical solutions of the Black-Scholes-Merton equation, Monte Carlo methods, and time series. Basic measure theory is used as a tool to describe probabilistic phenomena. The level of familiarity with computer programming is kept to a minimum. To make the book accessible to a wider audience, some background mathematical facts are included in the first part of the book and also in the appendices. This work attempts to bridge the gap between mathematics and finance by using diagrams, graphs and simulations in addition to rigorous theoretical exposition. Simulations are not only used as the computational method in quantitative finance, but they can also facilitate an intuitive and deeper understanding of theoretical concepts. Stochastic Analysis for Finance with Simulations is designed for readers who want to have a deeper understanding of the delicate theory of quantitative finance by doing computer simulations in addition to theoretical study. It will particularly appeal to advanced undergraduate and graduate students in mathematics and business, but not excluding practitioners in finance industry.
Although three decades have passed since first publication of this book reprinted now as a result of popular demand, the content remains up-to-date and interesting for many researchers as is shown by the many references to it in current publications. The "ground floor" of Optimal Stopping Theory was constructed by A.Wald in his sequential analysis in connection with the testing of statistical hypotheses by non-traditional (sequential) methods. It was later discovered that these methods have, in idea, a close connection to the general theory of stochastic optimization for random processes. The area of application of the Optimal Stopping Theory is very broad. It is sufficient at this point to emphasise that its methods are well tailored to the study of American (-type) options (in mathematics of finance and financial engineering), where a buyer has the freedom to exercise an option at any stopping time. In this book, the general theory of the construction of optimal stopping policies is developed for the case of Markov processes in discrete and continuous time. One chapter is devoted specially to the applications that address problems of the testing of statistical hypotheses, and quickest detection of the time of change of the probability characteristics of the observable processes. The author, A.N.Shiryaev, is one of the leading experts of the field and gives an authoritative treatment of a subject that, 30 years after original publication of this book, is proving increasingly important.
This book puts forward a new mathematical theory to study chaotic phenomenon. The uniform theory is established on the basis of two elementary concept of circle and externally tangent square in mathematics. The author studies the uniformity of a finite set of points distributed in space by uniform theory. This book also illustrates that uniform theory performs better than other indices such as entropy and Lyapunov exponent in chaos measurement by numerous examples. This book develops a new mathematical tool for studying chaos so it will be appealing to students and researchers interested in theory of chaos. It also has potential applications in various fields such as Engineering, Forestry and Ecology.
One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950 s and the engineering applications of stochastic processes in the 1940 s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations. * A systematic treatment of stochastic structural dynamics applying the finite element methods * Highly illustrated throughout and aimed at advanced and specialist levels, it focuses on computational aspects instead of theory * Emphasizes results mainly in the time domain with limited contents in the time-frequency domain * Presents and illustrates direction integration methods for analyzing the statistics of the response of linear and nonlinear structures to stochastic loads Under Author Information - one change of word to existing text: He is a Fellow of the American Society of Mechanical Engineers (ASME)...
The monograph is devoted to an investigation of co-operative effects in stochastic models. It includes original results of the authors in the last decade. The main object of the monograph is an analysis of an influence of a stochastic model structure on its characteristics. Problems of a co-operation and a decomposition are actual in a solution of a lot of concrete problems. These problems are: a parallelisation of algorithms and programs, a modelling of supercomputers, computer networks, systems of mobile telephones catastrophes in complex systems, a design and an improvement of technological and economical processes etc. The co-operative effects create a source of significant dependencies between complex system characteristics under large random disturbances. To analyse these effects is necessary to create special methods based on structural analysis of multi-element stochastic models together with majoral asymptotic bounds of these models characteristics. At the same time it demands to develop new approaches to a processing of statistical data and a skill in an usage of the probability theory limit theorems and related asymptotic series and bounds. A choice of the monograph material is defined as by initial applied problems so by probability methods of their solution. Conditionally the monograph may be divided into two parts. First of them contains four sections devoted to a finding of the co-operative effects and to a development of new related analytical and numerical methods. This part has presumably methodological character and creates a theoretical base of an investigation of applied stochastic systems. Second part contains three sections devoted to a solution of different applied problems. It has some interesting substantial results.
This book studies the large deviations for empirical measures and vector-valued additive functionals of Markov chains with general state space. Under suitable recurrence conditions, the ergodic theorem for additive functionals of a Markov chain asserts the almost sure convergence of the averages of a real or vector-valued function of the chain to the mean of the function with respect to the invariant distribution. In the case of empirical measures, the ergodic theorem states the almost sure convergence in a suitable sense to the invariant distribution. The large deviation theorems provide precise asymptotic estimates at logarithmic level of the probabilities of deviating from the preponderant behavior asserted by the ergodic theorems.
Simulation, Sixth Edition continues to introduce aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers will learn to apply the results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions. By explaining how a computer can be used to generate random numbers and how to use these random numbers to generate the behavior of a stochastic model over time, this book presents the statistics needed to analyze simulated data and validate simulation models.
Thanks to the driving forces of the Ito calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial differential equations, physics, and mathematical finance. This book is a compact, graduate-level text that develops the two calculi in tandem, laying out a balanced toolbox for researchers and students in mathematics and mathematical finance. The book explores foundations and applications of the two calculi, including stochastic integrals and differential equations, and the distribution theory on Wiener space developed by the Japanese school of probability. Uniquely, the book then delves into the possibilities that arise by using the two flavors of calculus together. Taking a distinctive, path-space-oriented approach, this book crystallizes modern day stochastic analysis into a single volume.
In this book, the optimal transportation problem (OT) is described as a variational problem for absolutely continuous stochastic processes with fixed initial and terminal distributions. Also described is Schroedinger's problem, which is originally a variational problem for one-step random walks with fixed initial and terminal distributions. The stochastic optimal transportation problem (SOT) is then introduced as a generalization of the OT, i.e., as a variational problem for semimartingales with fixed initial and terminal distributions. An interpretation of the SOT is also stated as a generalization of Schroedinger's problem. After the brief introduction above, the fundamental results on the SOT are described: duality theorem, a sufficient condition for the problem to be finite, forward-backward stochastic differential equations (SDE) for the minimizer, and so on. The recent development of the superposition principle plays a crucial role in the SOT. A systematic method is introduced to consider two problems: one with fixed initial and terminal distributions and one with fixed marginal distributions for all times. By the zero-noise limit of the SOT, the probabilistic proofs to Monge's problem with a quadratic cost and the duality theorem for the OT are described. Also described are the Lipschitz continuity and the semiconcavity of Schroedinger's problem in marginal distributions and random variables with given marginals, respectively. As well, there is an explanation of the regularity result for the solution to Schroedinger's functional equation when the space of Borel probability measures is endowed with a strong or a weak topology, and it is shown that Schroedinger's problem can be considered a class of mean field games. The construction of stochastic processes with given marginals, called the marginal problem for stochastic processes, is discussed as an application of the SOT and the OT.
This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.
In pioneering work in the 1950s, S. Karlin and J. McGregor showed that probabilistic aspects of certain Markov processes can be studied by analyzing orthogonal eigenfunctions of associated operators. In the decades since, many authors have extended and deepened this surprising connection between orthogonal polynomials and stochastic processes. This book gives a comprehensive analysis of the spectral representation of the most important one-dimensional Markov processes, namely discrete-time birth-death chains, birth-death processes and diffusion processes. It brings together the main results from the extensive literature on the topic with detailed examples and applications. Also featuring an introduction to the basic theory of orthogonal polynomials and a selection of exercises at the end of each chapter, it is suitable for graduate students with a solid background in stochastic processes as well as researchers in orthogonal polynomials and special functions who want to learn about applications of their work to probability. |
![]() ![]() You may like...
Data Science: Theory and Applications…
C.R. Rao, Arni S.R. Srinivasa Rao
Hardcover
R6,417
Discovery Miles 64 170
Stochastic Numerical Methods - An…
Raul Toral, Pere Colet
Paperback
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R5,349
Discovery Miles 53 490
Markov Decision Processes in Practice
Richard J Boucherie, Nico M. van Dijk
Hardcover
R7,891
Discovery Miles 78 910
Two-Dimensional Random Walk - From Path…
Serguei Popov
Hardcover
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,442
Discovery Miles 64 420
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,388
Discovery Miles 73 880
|