![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Praise for THE SECOND EDITION "A valuable contribution . . . rigorous and carefully thought out." A state-of-the-art text on stochastic models and their applications Much has changed in the field of stochastic modeling since the highly successful Second Edition of this popular text. In response, the authors have significantly revised their book to deliver a thoroughly up-to-date overview of the field. This Third Edition of Elements of Applied Stochastic Processes provides a basic understanding of the fundamental theory of stochastic processes. Topics include Markov chains, and Markov, branching, renewal, and stationary processes, all of which are illustrated with the rich diversity of actual applications. Restructured to enhance the book’s usefulness for practicing professionals, students, and instructors, this edition features two chapters dedicated entirely to applications from journal articles and new material on statistical inference for stochastic processes, with inference on queues as an area of application. Also new is a chapter on simulation and Markov Chain Monte Carlo. This updated new edition:
Of the three lecture courses making up the CIME summer school on Fluid Dynamics at Cetraro in 2005 reflected in this volume, the first, due to Sergio Albeverio describes deterministic and stochastic models of hydrodynamics. In the second course, Franco Flandoli starts from 3D Navier-Stokes equations and ends with turbulence. Finally, Yakov Sinai, in the 3rd course, describes some rigorous mathematical results for multidimensional Navier-Stokes systems and some recent results on the one-dimensional Burgers equation with random forcing.
I believe that the authors have written a first-class book which can be used for a second or third year graduate level course in the subject... Researchers working in the area will certainly use the book as a standard reference... Given how well the book is written and organized, it is sure to become one of the major texts in the subject in the years to come, and it is highly recommended to both researchers working in the field, and those who want to learn about the subject. a SIAM Review (Review of the First Edition) This book is devoted to one of the fastest developing fields in modern control theory---the so-called 'H-infinity optimal control theory'... In the authors' opinion 'the theory is now at a stage where it can easily be incorporated into a second-level graduate course in a control curriculum'. It seems that this book justifies this claim. a Mathematical Reviews (Review of the First Edition) This work is a perfect and extensive research reference covering the state-space techniques for solving linear as well as nonlinear H-infinity control problems. a IEEE Transactions on Automatic Control (Review of the Second Edition)
The theory of random Schrodinger operators is devoted to the mathematical analysis of quantum mechanical Hamiltonians modeling disordered solids. Apart from its importance in physics, it is a multifaceted subject in its own right, drawing on ideas and methods from various mathematical disciplines like functional analysis, selfadjoint operators, PDE, stochastic processes and multiscale methods. The present text describes in detail a quantity encoding spectral features of random operators: the integrated density of states or spectral distribution function. Various approaches to the construction of the integrated density of states and the proof of its regularity properties are presented. The setting is general enough to apply to random operators on Riemannian manifolds with a discrete group action. References to and a discussion of other properties of the IDS are included, as are a variety of models beyond those treated in detail here.
This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.
This book constitutes the refereed proceedings of the 4th International Symposium on Stochastic Algorithms: Foundations and Applications, SAGA 2007. The nine revised full papers and five invited papers presented were carefully selected for inclusion in the book. The contributed papers included in this volume cover both theoretical as well as applied aspects of stochastic computations with a special focus on investigating the power of randomization in algorithmics.
Applied Stochastic Processes introduces the reader to stochastic processes with a focus on the applications of the theoretical results. This text is self-contained and logically organized. It begins with a review of elementary probability, followed by an introduction to the most important subjects in the field of stochastic processes. Topics covered include Gaussian and Markovian processes, Markov Chains, Weiner and Poisson processes, Brownian motion, and queuing theory with a special highlight on diffusion processes. The reader will appreciate the clear definitions, thoroughly explained examples and interesting notes about the mathematicians referenced throughout the text. In addition, there are hundreds of advanced, multi-part problems following each chapter which enable even a novice of theoretical mathematics to master the material presented. This textbook evolved from the author's lecture notes for a graduate-level course on applied stochastic processes. It is meant for graduate-level students in electrical engineering, applied mathematics, and notably operations research.
This handbook, now available in paperback, brings together a comprehensive collection of mathematical material in one location. It also offers a variety of new results interpreted in a form that is particularly useful to engineers, scientists, and applied mathematicians. The handbook is not specific to fixed research areas, but rather it has a generic flavor that can be applied by anyone working with probabilistic and stochastic analysis and modeling. Classic results are presented in their final form without derivation or discussion, allowing for much material to be condensed into one volume.
This book is intended to give an introduction to the theory of forwa- backward stochastic di erential equations (FBSDEs, for short) which has received strong attention in recent years because of its interesting structure and its usefulness in various applied elds. The motivation for studying FBSDEs comes originally from stochastic optimal control theory, that is, the adjoint equation in the Pontryagin-type maximum principle. The earliest version of such an FBSDE was introduced by Bismut 1] in 1973, with a decoupled form, namely, a system of a usual (forward)stochastic di erential equation and a (linear) backwardstochastic dieren tial equation (BSDE, for short). In 1983, Bensoussan 1] proved the well-posedness of general linear BSDEs by using martingale representation theorem. The r st well-posedness result for nonlinear BSDEs was proved in 1990 by Pardoux{Peng 1], while studying the general Pontryagin-type maximum principle for stochastic optimal controls. A little later, Peng 4] discovered that the adapted solution of a BSDE could be used as a pr- abilistic interpretation of the solutions to some semilinear or quasilinear parabolic partial dieren tial equations (PDE, for short), in the spirit of the well-known Feynman-Kac formula. After this, extensive study of BSDEs was initiated, and potential for its application was found in applied and t- oretical areas such as stochastic control, mathematical n ance, dieren tial geometry, to mention a few. The study of (strongly) coupled FBSDEs started in early 90s. In his Ph.
Das Buch liefert die Werkzeuge, um den Gesetzmassigkeiten der Stochastik auf die Spur zu kommen. Dafur wird, ausgehend von der elementaren beschreibenden Statistik, die Wahrscheinlichkeitstheorie bis hin zum Zentralen Grenzwertsatz entwickelt. Ein weiterer Schwerpunkt liegt in der Einfuhrung in aktuelle stochastische Fragestellungen - von der Informationstheorie bis zur Finanzmathematik
This work presents the theory of stochastic processes in its present state of rich imperfection. To describe this work as encyclopedic does not give an accurate picture of its content and style. Some parts read like a textbook, but others are more technical and contain relatively new results. The exposition is robust and explicit, as one has come to expect of the Russian tradition of mathematical writing. The authors' display mastery of their material, and demonstrate their confident insight into its underlying structure. The set when completed will be an invaluable source of information and reference in this ever-expanding field.
A breakthrough approach to the theory and applications of stochastic integration The theory of stochastic integration has become an intensely studied topic in recent years, owing to its extraordinarily successful application to financial mathematics, stochastic differential equations, and more. This book features a new measure theoretic approach to stochastic integration, opening up the field for researchers in measure and integration theory, functional analysis, probability theory, and stochastic processes. World-famous expert on vector and stochastic integration in Banach spaces Nicolae Dinculeanu compiles and consolidates information from disparate journal articles-including his own results-presenting a comprehensive, up-to-date treatment of the theory in two major parts. He first develops a general integration theory, discussing vector integration with respect to measures with finite semivariation, then applies the theory to stochastic integration in Banach spaces. Vector Integration and Stochastic Integration in Banach Spaces goes far beyond the typical treatment of the scalar case given in other books on the subject. Along with such applications of the vector integration as the Reisz representation theorem and the Stieltjes integral for functions of one or two variables with finite semivariation, it explores the emergence of new classes of summable processes that make applications possible, including square integrable martingales in Hilbert spaces and processes with integrable variation or integrable semivariation in Banach spaces. Numerous references to existing results supplement this exciting, breakthrough work.
A unique, integrated treatment of computer modeling and simulation "The future of science belongs to those willing to make the shift to simulation-based modeling," predicts Rice Professor James Thompson, a leading modeler and computational statistician widely known for his original ideas and engaging style. He discusses methods, available to anyone with a fast desktop computer, for integrating simulation into the modeling process in order to create meaningful models of real phenomena. Drawing from a wealth of experience, he gives examples from trading markets, oncology, epidemiology, statistical process control, physics, public policy, combat, real-world optimization, Bayesian analyses, and population dynamics. Dr. Thompson believes that, so far from liberating us from the necessity of modeling, the fast computer enables us to engage in realistic models of processes in , for example, economics, which have not been possible earlier because simple stochastic models in the forward temporal direction generally become quite unmanageably complex when one is looking for such things as likelihoods. Thompson shows how simulation may be used to bypass the necessity of obtaining likelihood functions or moment-generating functions as a precursor to parameter estimation. Simulation: A Modeler’s Approach is a provocative and practical guide for professionals in applied statistics as well as engineers, scientists, computer scientists, financial analysts, and anyone with an interest in the synergy between data, models, and the digital computer.
Point process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006
The theory of stochastic integration, also called the Ito calculus, has a large spectrum of applications in virtually every scientific area involving random functions, but it can be a very difficult subject for people without much mathematical background. The Ito calculus was originally motivated by the construction of Markov diffusion processes from infinitesimal generators. Previously, the construction of such processes required several steps, whereas Ito constructed these diffusion processes directly in a single step as the solutions of stochastic integral equations associated with the infinitesimal generators. Moreover, the properties of these diffusion processes can be derived from the stochastic integral equations and the Ito formula. This introductory textbook on stochastic integration provides a concise introduction to the Ito calculus, and covers the following topics: * Constructions of Brownian motion; * Stochastic integrals for Brownian motion and martingales; * The Ito formula; * Multiple Wiener-Ito integrals; * Stochastic differential equations; * Applications to finance, filtering theory, and electric circuits. The reader should have a background in advanced calculus and elementary probability theory, as well as a basic knowledge of measure theory and Hilbert spaces. Each chapter ends with a variety of exercises designed to help the reader further understand the material. Hui-Hsiung Kuo is the Nicholson Professor of Mathematics at Louisiana State University. He has delivered lectures on stochastic integration at Louisiana State University, Cheng Kung University, Meijo University, and University of Rome "Tor Vergata," among others. He is also theauthor of Gaussian Measures in Banach Spaces (Springer 1975), and White Noise Distribution Theory (CRC Press 1996), and a memoir of his childhood growing up in Taiwan, An Arrow Shot into the Sun (Abridge Books 2004).
This volume constitutes the proceedings of the 3rd Symposium on Stochastic Algorithms, Foundations and Applications (SAGA 2005), held in Moscow, R- sia, at Moscow State University on October 20-22, 2005. The symposium was organized by the Department of Discrete Mathematics, Faculty of Mechanics and Mathematics of Moscow State University and was partially supported by the Russian Foundation for Basic Research under Project No. 05-01-10140-?. The SAGA symposium series is a biennial meeting which started in 2001 in Berlin, Germany(LNCS vol. 2264). The second symposium was held in Sept- ber 2003 at the University of Hertfordshire, Hat?eld, UK (LNCS vol. 2827). Sincethe?rstsymposiuminBerlinin2001, anincreasedinterestintheSAGA series can be noticed. For SAGA 2005, we received submissions from China, the European Union, Iran, Japan, Korea, Russia, SAR Hong Kong, Taiwan, and USA, fromwhich 14 papers were?nally selected for publication after a thorough reviewing process. The contributed papers included in this volume cover both theoretical as well as applied aspects of stochastic computations, which is one of the main aims of the SAGA series. Furthermore, ?ve invited lectures were delivered at SAGA 2005: The talk by Alexander A. Sapozhenko (Moscow State University) summarizes results on the container method, a technique that is used to solve enumeration problems for various combinatorial structures and which has - merous applications in the design andanalysisof stochasticalgorithms. Christos D. Zaroliagis (University of Patras) presented recent advances in multiobjective optimization
This book is a photographic reproduction of the book of the same title published in 1981, for which there has been continuing demand on account of its accessible technical level. Its appearance also helped generate considerable subsequent work on inhomogeneous products of matrices. This printing adds an additional bibliography on coefficients of ergodicity and a list of corrigenda. Eugene Seneta received his Ph.D. in 1968 from the Australian National University. He left Canberra in 1979 to become Professor and Head of the Department of Mathematical Statistics at the University of Sydney. He has been a regular visitor to the United States, most frequently to the University of Virginia. Now Emeritus Professor at the University of Sydney, he has recently developed a renewed interest in financial mathematics. He was elected Fellow of the Australian Academy of Science in 1985 and awarded the Pitman Medal of the Statistical Society of Australia for his distinguished research contributions. The first edition of this book, entitled Non-Negative Matrices, appeared in 1973, and was followed in 1976 by his Regularly Varying Functions in the Springer Lecture Notes in Mathematics, later translated into Russian. Both books were pioneering in their fields. In 1977, Eugene Seneta coauthored (with C. C. Heyde ) I.J. BienaymA(c): Statistical Theory Anticipated, which is effectively a history of probability and statistics in the 19th century, and in 2001 co-edited with the same colleague Statisticians of the Centuries, both published by Springer. Having served on the editorial board of the Encyclopedia of Statistical Science, he is currently Joint Editor of the International Statistical Review.
This important book provides information necessary for those dealing with stochastic calculus and pricing in the models of financial markets operating under uncertainty; introduces the reader to the main concepts, notions and results of stochastic financial mathematics; and develops applications of these results to various kinds of calculations required in financial engineering. It also answers the requests of teachers of financial mathematics and engineering by making a bias towards probabilistic and statistical ideas and the methods of stochastic calculus in the analysis of market risks.
In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.
Provides a more accessible introduction than other books on Markov processes by emphasizing the structure of the subject and avoiding sophisticated measure theory Leads the reader to a rigorous understanding of basic theory
From the Reviews: "Gihman and Skorohod have done an excellent job of presenting the theory in its present state of rich imperfection." --D.W. Stroock, Bulletin of the American Mathematical Society, 1980
Stochastic Processes and Random Vibrations Theory and Practice JAlA-us SA3lnes University of Iceland, ReykjavA-k, Iceland This book covers the fundamental theory of stochastic processes for analysing mechanical and structural systems subject to random excitation, and also for treating random signals of a general nature with special emphasis on earthquakes and turbulent winds. Starting with basic probability calculus and the fundamental theory of stochastic processes, the author progresses onto engineering applications: systems analysis and treatment of random signals. The random excitation and response of simple mechanical systems and complex structural systems is discussed in some detail. Extreme conditions such as distribution of large vibration peaks, random excursions above certain limits and mechanical failure due to fatigue are then addressed. The text also offers a discussion of some well-known stochastic models and an introduction to signal processing and digital filters. Numerous worked examples are included: distribution of extreme wind speeds, analysis of structural reliability, earthquake response of a tall multi-storey structure, wind loading of tall towers, generation of random earthquake signals and earthquake risk analysis.
This volume includes the five lecture courses given at the CIME-EMS School on "Stochastic Methods in Finance" held in Bressanone/Brixen, Italy 2003. It deals with innovative methods, mainly from stochastic analysis, that play a fundamental role in the mathematical modelling of finance and insurance: the theory of stochastic processes, optimal and stochastic control, stochastic differential equations, convex analysis and duality theory. Five topics are treated in detail: Utility maximization in incomplete markets; the theory of nonlinear expectations and its relationship with the theory of risk measures in a dynamic setting; credit risk modelling; the interplay between finance and insurance; incomplete information in the context of economic equilibrium and insider trading.
Opening new directions in research in both discrete event dynamic systems as well as in stochastic control, this volume focuses on a wide class of control and of optimization problems over sequences of integer numbers. This is a counterpart of convex optimization in the setting of discrete optimization. The theory developed is applied to the control of stochastic discrete-event dynamic systems. Some applications are admission, routing, service allocation and vacation control in queuing networks. Pure and applied mathematicians will enjoy reading the book since it brings together many disciplines in mathematics: combinatorics, stochastic processes, stochastic control and optimization, discrete event dynamic systems, algebra. |
![]() ![]() You may like...
Teaching life skills in the Foundation…
Mariana Naude, Corinne Meier
Paperback
![]() R668 Discovery Miles 6 680
Genetics Education - Current Challenges…
Michal Haskel-Ittah, Anat Yarden
Hardcover
R3,966
Discovery Miles 39 660
Advanced Concept Maps in STEM Education…
Michael Tang, Arunprakash T Karunanithi
Hardcover
R4,366
Discovery Miles 43 660
|