![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well established, the study of their stability properties has grown rapidly only in the past 20 years, and most results have remained scattered in journals and conference proceedings. This book offers a systematic presentation of the modern theory of the stability of stochastic differential equations in infinite dimensional spaces - particularly Hilbert spaces. The treatment includes a review of basic concepts and investigation of the stability theory of linear and nonlinear stochastic differential equations and stochastic functional differential equations in infinite dimensions. The final chapter explores topics and applications such as stochastic optimal control and feedback stabilization, stochastic reaction-diffusion, Navier-Stokes equations, and stochastic population dynamics. In recent years, this area of study has become the focus of increasing attention, and the relevant literature has expanded greatly. Stability of Infinite Dimensional Stochastic Differential Equations with Applications makes up-to-date material in this important field accessible even to newcomers and lays the foundation for future advances.
Stochastic Process Optimization using Aspen (R) Plus Bookshop Category: Chemical Engineering Optimization can be simply defined as "choosing the best alternative among a set of feasible options". In all the engineering areas, optimization has a wide range of applications, due to the high number of decisions involved in an engineering environment. Chemical engineering, and particularly process engineering, is not an exception; thus stochastic methods are a good option to solve optimization problems for the complex process engineering models. In this book, the combined use of the modular simulator Aspen (R) Plus and stochastic optimization methods, codified in MATLAB, is presented. Some basic concepts of optimization are first presented, then, strategies to use the simulator linked with the optimization algorithm are shown. Finally, examples of application for process engineering are discussed. The reader will learn how to link the process simulator Aspen (R) Plus and stochastic optimization algorithms to solve process design problems. They will gain ability to perform multi-objective optimization in several case studies. Key Features: * The book links simulation and optimization through numerical analyses and stochastic optimization techniques * Includes use of examples to illustrate the application of the concepts and specific guidance on the use of software (Aspen (R) Plus, Excel, MATLB) to set up and solve models representing complex problems. * Illustrates several examples of applications for the linking of simulation and optimization software with other packages for optimization purposes. * Provides specific information on how to implement stochastic optimization with process simulators. * Enable readers to identify practical and economic solutions to problems of industrial relevance, enhancing the safety, operation, environmental, and economic performance of chemical processes.
The first book to examine weakly stationary random fields and their connections with invariant subspaces (an area associated with functional analysis). It reviews current literature, presents central issues and most important results within the area. For advanced Ph.D. students, researchers, especially those conducting research on Gaussian theory.
Infinite Divisibility of Probability Distributions on the Real Line
reassesses classical theory and presents new developments, while
focusing on divisibility with respect to convolution or addition of
independent random variables. This definitive, example-rich text
supplies approximately 100 examples to correspond with all major
chapter topics and reviews infinite divisibility in light of the
central limit problem. It contrasts infinite divisibility with
finite divisibility, discusses the preservation of infinite
divisibility under mixing for many classes of distributions, and
investigates self-decomposability and stability on the nonnegative
reals, nonnegative integers, and the reals.
This textbook has been developed from the lecture notes for a one-semester course on stochastic modelling. It reviews the basics of probability theory and then covers the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. Rigorous proofs are often replaced with sketches of arguments -- with indications as to why a particular result holds, and also how it is connected with other results -- and illustrated by examples. Wherever possible, the book includes references to more specialised texts containing both proofs and more advanced material related to the topics covered.
This book presents new research in probability theory using ideas from mathematical logic. It is a general study of stochastic processes on adapted probability spaces, employing the concept of similarity of stochastic processes based on the notion of adapted distribution. The authors use ideas from model theory and methods from nonstandard analysis. The construction of spaces with certain richness properties, defined by insights from model theory, becomes easy using nonstandard methods, but remains difficult or impossible without them.
A path-breaking account of Markov decision processes-theory and
computation
This book will cover heuristic optimization techniques and applications in engineering problems. The book will be divided into three sections that will provide coverage of the techniques, which can be employed by engineers, researchers, and manufacturing industries, to improve their productivity with the sole motive of socio-economic development. This will be the first book in the category of heuristic techniques with relevance to engineering problems and achieving optimal solutions. Features Explains the concept of optimization and the relevance of using heuristic techniques for optimal solutions in engineering problems Illustrates the various heuristics techniques Describes evolutionary heuristic techniques like genetic algorithm and particle swarm optimization Contains natural based techniques like ant colony optimization, bee algorithm, firefly optimization, and cuckoo search Offers sample problems and their optimization, using various heuristic techniques
This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.
The prolonged boom in the US and European stock markets has led to increased interest in the mathematics of security markets, most notably in the theory of stochastic integration. This text gives a rigorous development of the theory of stochastic integration as it applies to the valuation of derivative securities. It includes all the tools necessary for readers to understand how the stochastic integral is constructed with respect to a general continuous martingale.
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications.
Recognized as a "Recommended" title by Choice for their April 2021 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
This book explains mathematical theories of a collection of stochastic partial differential equations and their dynamical behaviors. Based on probability and stochastic process, the authors discuss stochastic integrals, Ito formula and Ornstein-Uhlenbeck processes, and introduce theoretical framework for random attractors. With rigorous mathematical deduction, the book is an essential reference to mathematicians and physicists in nonlinear science. Contents: Preliminaries The stochastic integral and Ito formula OU processes and SDEs Random attractors Applications Bibliography Index
The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Krakow - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing the amount of wastes produced in the ArcelorMittal Steel Plant production processes. Moreover, real input and output data of selected processes under uncertainty, mainly used in the LCA technique, have been examined. The last chapter of this monograph contains final summary. The log-normal probability distribution, widely used in risk analysis and environmental management, in order to develop a stochastic analysis of the LCA, as well as uniform distribution for stochastic approach of pollution transport in porous media has been proposed. The distributions employed in this monograph are assembled from site-specific data, data existing in the most current literature, and professional judgment."
This important book provides information necessary for those dealing with stochastic calculus and pricing in the models of financial markets operating under uncertainty; introduces the reader to the main concepts, notions and results of stochastic financial mathematics; and develops applications of these results to various kinds of calculations required in financial engineering. It also answers the requests of teachers of financial mathematics and engineering by making a bias towards probabilistic and statistical ideas and the methods of stochastic calculus in the analysis of market risks.
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau's moment map through Souriau's Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.
"Covers the areas of modern analysis and probability theory. Presents a collection of papers given at the Festschrift held in honor of the 65 birthday of M. M. Rao, whose prolific published research includes the well-received Marcel Dekker, Inc. books Theory of Orlicz Spaces and Conditional Measures and Applications. Features previously unpublished research articles by a host of internationally recognized scholars."
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Based on the proceedings of the first International Conference on Matrix-Analytic Methods (MAM) in Stochastic Models, held in Flint, Michigan, this book presents a general working knowledge of MAM through tutorial articles and application papers. It furnishes information on MAM studies carried out in the former Soviet Union.
This compact yet thorough text zeros in on the parts of the theory that are particularly relevant to applications . It begins with a description of Brownian motion and the associated stochastic calculus, including their relationship to partial differential equations. It solves stochastic differential equations by a variety of methods and studies in detail the one-dimensional case. The book concludes with a treatment of semigroups and generators, applying the theory of Harris chains to diffusions, and presenting a quick course in weak convergence of Markov chains to diffusions.
This book provides an introduction to the asymptotic theory of random summation, combining a strict exposition of the foundations of this theory and recent results. It also includes a description of its applications to solving practical problems in hardware and software reliability, insurance, finance, and more. The authors show how practice interacts with theory, and how new mathematical formulations of problems appear and develop.
Discusses replacement, repair, and inspection Offers estimation and statistical tests Covers accelerated life testing Explores warranty analysis manufacturing Includes service reliability
This volume contains refereed research or review articles presented at the 7th Seminar on Stochastic Analysis, Random Fields and Applications which took place at the Centro Stefano Franscini (Monte Verita) in Ascona, Switzerland, in May 2011. The seminar focused mainly on: - stochastic (partial) differential equations, especially with jump processes, construction of solutions and approximations - Malliavin calculus and Stein methods, and other techniques in stochastic analysis, especially chaos representations and convergence, and applications to models of interacting particle systems - stochastic methods in financial models, especially models for power markets or for risk analysis, empirical estimation and approximation, stochastic control and optimal pricing. The book will be a valuable resource for researchers in stochastic analysis and for professionals interested in stochastic methods in finance. " |
You may like...
Simulating Copulas: Stochastic Models…
Matthias Scherer, Jan-Frederik Mai
Hardcover
R2,796
Discovery Miles 27 960
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Advancements in Bayesian Methods and…
Alastair G Young, Arni S.R. Srinivasa Rao, …
Hardcover
R6,201
Discovery Miles 62 010
Information Geometry, Volume 45
Arni S.R. Srinivasa Rao, C.R. Rao, …
Hardcover
R6,201
Discovery Miles 62 010
Deep Learning, Volume 48
Arni S.R. Srinivasa Rao, Venu Govindaraju, …
Hardcover
R6,171
Discovery Miles 61 710
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R4,843
Discovery Miles 48 430
|