Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.
Change of Time and Change of Measure provides a comprehensive account of two topics that are of particular significance in both theoretical and applied stochastics: random change of time and change of probability law.Random change of time is key to understanding the nature of various stochastic processes, and gives rise to interesting mathematical results and insights of importance for the modeling and interpretation of empirically observed dynamic processes. Change of probability law is a technique for solving central questions in mathematical finance, and also has a considerable role in insurance mathematics, large deviation theory, and other fields.The book comprehensively collects and integrates results from a number of scattered sources in the literature and discusses the importance of the results relative to the existing literature, particularly with regard to mathematical finance. It is invaluable as a textbook for graduate-level courses and students or a handy reference for researchers and practitioners in financial mathematics and econometrics.
The main mathematical ideas are presented in a context with which
economists will be familiar. Using a binomial approximation to
Brownian motion, the mathematics is reduced to simple algebra,
progressing to some equally simple limits. The starting point of
the calculus of Brownian motion -- "Ito's Lemma" -- emerges by
analogy with the economics of risk-aversion. Conditions for the
optimal regulation of Brownian motion, including the important, but
often mysterious "smooth pasting" condition, are derived in a
similar way. Each theoretical derivation is illustrated by
developing a significant economic application, drawn mainly from
recent research in macro-economics and international
economics.
Random variation is a fact of life that provides substance to a wide range of problems in the sciences, engineering, and economics. There is a growing need in diverse disciplines to model complex patterns of variation and interdependence using random fields, as both deterministic treatment and conventional statistics are often insufficient. An ideal random field model will capture key features of complex random phenomena in terms of a minimum number of physically meaningful and experimentally accessible parameters. This volume, a revised and expanded edition of an acclaimed book first published by the M I T Press, offers a synthesis of methods to describe and analyze and, where appropriate, predict and control random fields. There is much new material, covering both theory and applications, notably on a class of probability distributions derived from quantum mechanics, relevant to stochastic modeling in fields such as cosmology, biology and system reliability, and on discrete-unit or agent-based random processes. Random Fields is self-contained and unified in presentation. The first edition was found, in a review in EOS (American Geophysical Union) to be "both technically interesting and a pleasure to read ... the presentation is clear and the book should be useful to almost anyone who uses random processes to solve problems in engineering or science ... and (there is) continued emphasis on describing the mathematics in physical terms."
Random variation is a fact of life that provides substance to a wide range of problems in the sciences, engineering, and economics. There is a growing need in diverse disciplines to model complex patterns of variation and interdependence using random fields, as both deterministic treatment and conventional statistics are often insufficient. An ideal random field model will capture key features of complex random phenomena in terms of a minimum number of physically meaningful and experimentally accessible parameters. This volume, a revised and expanded edition of an acclaimed book first published by the M I T Press, offers a synthesis of methods to describe and analyze and, where appropriate, predict and control random fields. There is much new material, covering both theory and applications, notably on a class of probability distributions derived from quantum mechanics, relevant to stochastic modeling in fields such as cosmology, biology and system reliability, and on discrete-unit or agent-based random processes. Random Fields is self-contained and unified in presentation. The first edition was found, in a review in EOS (American Geophysical Union) to be "both technically interesting and a pleasure to read ... the presentation is clear and the book should be useful to almost anyone who uses random processes to solve problems in engineering or science ... and (there is) continued emphasis on describing the mathematics in physical terms."
Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics. The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.
Operations research uses quantitative models to analyze and predict the behavior of systems and to provide information for decision makers. Two key concepts in such research are optimization and uncertainty. Typical models in stochastic operations research include queueing models, inventory models, financial engineering models, reliability models, and simulation models. This book contains a collection of peer-reviewed papers from the International Workshop on Recent Advances in Stochastic Operations Research (2007 RASOR Nanzan) held on March 5-6, 2007, at Nanzan University, Nagoya, Japan. It enables advanced readers to understand the recent topics and results in stochastic operations research.
This textbook offers a compact introductory course on Malliavin calculus, an active and powerful area of research. It covers recent applications, including density formulas, regularity of probability laws, central and non-central limit theorems for Gaussian functionals, convergence of densities and non-central limit theorems for the local time of Brownian motion. The book also includes a self-contained presentation of Brownian motion and stochastic calculus, as well as Levy processes and stochastic calculus for jump processes. Accessible to non-experts, the book can be used by graduate students and researchers to develop their mastery of the core techniques necessary for further study.
The first book to examine weakly stationary random fields and their connections with invariant subspaces (an area associated with functional analysis). It reviews current literature, presents central issues and most important results within the area. For advanced Ph.D. students, researchers, especially those conducting research on Gaussian theory.
Stochastic Process Optimization using Aspen (R) Plus Bookshop Category: Chemical Engineering Optimization can be simply defined as "choosing the best alternative among a set of feasible options". In all the engineering areas, optimization has a wide range of applications, due to the high number of decisions involved in an engineering environment. Chemical engineering, and particularly process engineering, is not an exception; thus stochastic methods are a good option to solve optimization problems for the complex process engineering models. In this book, the combined use of the modular simulator Aspen (R) Plus and stochastic optimization methods, codified in MATLAB, is presented. Some basic concepts of optimization are first presented, then, strategies to use the simulator linked with the optimization algorithm are shown. Finally, examples of application for process engineering are discussed. The reader will learn how to link the process simulator Aspen (R) Plus and stochastic optimization algorithms to solve process design problems. They will gain ability to perform multi-objective optimization in several case studies. Key Features: * The book links simulation and optimization through numerical analyses and stochastic optimization techniques * Includes use of examples to illustrate the application of the concepts and specific guidance on the use of software (Aspen (R) Plus, Excel, MATLB) to set up and solve models representing complex problems. * Illustrates several examples of applications for the linking of simulation and optimization software with other packages for optimization purposes. * Provides specific information on how to implement stochastic optimization with process simulators. * Enable readers to identify practical and economic solutions to problems of industrial relevance, enhancing the safety, operation, environmental, and economic performance of chemical processes.
Applications of queueing network models have multiplied in the last generation, including scheduling of large manufacturing systems, control of patient flow in health systems, load balancing in cloud computing, and matching in ride sharing. These problems are too large and complex for exact solution, but their scale allows approximation. This book is the first comprehensive treatment of fluid scaling, diffusion scaling, and many-server scaling in a single text presented at a level suitable for graduate students. Fluid scaling is used to verify stability, in particular treating max weight policies, and to study optimal control of transient queueing networks. Diffusion scaling is used to control systems in balanced heavy traffic, by solving for optimal scheduling, admission control, and routing in Brownian networks. Many-server scaling is studied in the quality and efficiency driven Halfin-Whitt regime and applied to load balancing in the supermarket model and to bipartite matching in ride-sharing applications.
Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, Introduction to Stochastic Calculus Applied to Finance, Second Edition incorporates some of these new techniques and concepts to provide an accessible, up-to-date initiation to the field. New to the Second Edition Complements on discrete models, including Rogers' approach to the fundamental theorem of asset pricing and super-replication in incomplete markets Discussions on local volatility, Dupire's formula, the change of numeraire techniques, forward measures, and the forward Libor model A new chapter on credit risk modeling An extension of the chapter on simulation with numerical experiments that illustrate variance reduction techniques and hedging strategies Additional exercises and problems Providing all of the necessary stochastic calculus theory, the authors cover many key finance topics, including martingales, arbitrage, option pricing, American and European options, the Black-Scholes model, optimal hedging, and the computer simulation of financial models. They succeed in producing a solid introduction to stochastic approaches used in the financial world.
This volume features a collection of contributed articles and lecture notes from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes.
This book will cover heuristic optimization techniques and applications in engineering problems. The book will be divided into three sections that will provide coverage of the techniques, which can be employed by engineers, researchers, and manufacturing industries, to improve their productivity with the sole motive of socio-economic development. This will be the first book in the category of heuristic techniques with relevance to engineering problems and achieving optimal solutions. Features Explains the concept of optimization and the relevance of using heuristic techniques for optimal solutions in engineering problems Illustrates the various heuristics techniques Describes evolutionary heuristic techniques like genetic algorithm and particle swarm optimization Contains natural based techniques like ant colony optimization, bee algorithm, firefly optimization, and cuckoo search Offers sample problems and their optimization, using various heuristic techniques
Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well established, the study of their stability properties has grown rapidly only in the past 20 years, and most results have remained scattered in journals and conference proceedings. This book offers a systematic presentation of the modern theory of the stability of stochastic differential equations in infinite dimensional spaces - particularly Hilbert spaces. The treatment includes a review of basic concepts and investigation of the stability theory of linear and nonlinear stochastic differential equations and stochastic functional differential equations in infinite dimensions. The final chapter explores topics and applications such as stochastic optimal control and feedback stabilization, stochastic reaction-diffusion, Navier-Stokes equations, and stochastic population dynamics. In recent years, this area of study has become the focus of increasing attention, and the relevant literature has expanded greatly. Stability of Infinite Dimensional Stochastic Differential Equations with Applications makes up-to-date material in this important field accessible even to newcomers and lays the foundation for future advances.
Recognized as a "Recommended" title by Choice for their April 2021 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: * More than 200 examples and 600 end-of-chapter exercises * A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra * Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus * Introductions to mathematics as needed in order to suit readers at many mathematical levels * A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
Game theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
Infinite Divisibility of Probability Distributions on the Real Line
reassesses classical theory and presents new developments, while
focusing on divisibility with respect to convolution or addition of
independent random variables. This definitive, example-rich text
supplies approximately 100 examples to correspond with all major
chapter topics and reviews infinite divisibility in light of the
central limit problem. It contrasts infinite divisibility with
finite divisibility, discusses the preservation of infinite
divisibility under mixing for many classes of distributions, and
investigates self-decomposability and stability on the nonnegative
reals, nonnegative integers, and the reals.
This textbook has been developed from the lecture notes for a one-semester course on stochastic modelling. It reviews the basics of probability theory and then covers the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. Rigorous proofs are often replaced with sketches of arguments -- with indications as to why a particular result holds, and also how it is connected with other results -- and illustrated by examples. Wherever possible, the book includes references to more specialised texts containing both proofs and more advanced material related to the topics covered.
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau's moment map through Souriau's Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.
The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Krakow - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing the amount of wastes produced in the ArcelorMittal Steel Plant production processes. Moreover, real input and output data of selected processes under uncertainty, mainly used in the LCA technique, have been examined. The last chapter of this monograph contains final summary. The log-normal probability distribution, widely used in risk analysis and environmental management, in order to develop a stochastic analysis of the LCA, as well as uniform distribution for stochastic approach of pollution transport in porous media has been proposed. The distributions employed in this monograph are assembled from site-specific data, data existing in the most current literature, and professional judgment." |
You may like...
Modern Dynamic Reliability Analysis for…
Anatoly Lisnianski, Ilia Frenkel, …
Hardcover
R4,899
Discovery Miles 48 990
Hidden Link Prediction in Stochastic…
Babita Pandey, Aditya Khamparia
Hardcover
R5,098
Discovery Miles 50 980
The Theory of Queuing Systems with…
Alexander N. Dudin, Valentina I. Klimenok, …
Hardcover
R2,859
Discovery Miles 28 590
Modeling Uncertainty - An Examination of…
Moshe Dror, Pierre L'Ecuyer, …
Hardcover
R5,605
Discovery Miles 56 050
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
|