Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Stochastics
In 1978 Edwin T. Jaynes and Myron Tribus initiated a series of workshops to exchange ideas and recent developments in technical aspects and applications of Bayesian probability theory. The first workshop was held at the University of Wyoming in 1981 organized by C.R. Smith and W.T. Grandy. Due to its success, the workshop was held annually during the last 18 years. Over the years, the emphasis of the workshop shifted gradually from fundamental concepts of Bayesian probability theory to increasingly realistic and challenging applications. The 18th international workshop on Maximum Entropy and Bayesian Methods was held in Garching / Munich (Germany) (27-31. July 1998). Opening lectures by G. Larry Bretthorst and by Myron Tribus were dedicated to one of th the pioneers of Bayesian probability theory who died on the 30 of April 1998: Edwin Thompson Jaynes. Jaynes revealed and advocated the correct meaning of 'probability' as the state of knowledge rather than a physical property. This inter pretation allowed him to unravel longstanding mysteries and paradoxes. Bayesian probability theory, "the logic of science" - as E.T. Jaynes called it - provides the framework to make the best possible scientific inference given all available exper imental and theoretical information. We gratefully acknowledge the efforts of Tribus and Bretthorst in commemorating the outstanding contributions of E.T. Jaynes to the development of probability theory."
The book is devoted to the new trends in random evolutions and their various applications to stochastic evolutionary sytems (SES). Such new developments as the analogue of Dynkin's formulae, boundary value problems, stochastic stability and optimal control of random evolutions, stochastic evolutionary equations driven by martingale measures are considered. The book also contains such new trends in applied probability as stochastic models of financial and insurance mathematics in an incomplete market. In the famous classical financial mathematics Black-Scholes model of a (B, S) market for securities prices, which is used for the description of the evolution of bonds and stocks prices and also for their derivatives, such as options, futures, forward contracts, etc., it is supposed that the dynamic of bonds and stocks prices are set by a linear differential and linear stochastic differential equations, respectively, with interest rate, appreciation rate and volatility such that they are predictable processes. Also, in the Arrow-Debreu economy, the securities prices which support a Radner dynamic equilibrium are a combination of an Ito process and a random point process, with the all coefficients and jumps being predictable processes."
Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks. In this book, various aspects of these stochastic models are investigated in depth in an elementary way: Existence of equilibrium, characterization of stationary regimes, transient behaviors (rare events, hitting times) and critical regimes, etc. A simple presentation of stationary point processes and Palm measures is given. Scaling methods and functional limit theorems are a major theme of this book. In particular, a complete chapter is devoted to fluid limits of Markov processes.
This book considers recent developments in numerical error estimation and adaptive discretization for finite element and finite volume methods with particular attention given to discretization methods used frequently in computational fluid dynamics. The volume consists of six detailed articles by leading specialists covering a range of topics including a posteriori error estimation of functionals, one- and two-sided error bounds, error indicators for ad aptivity, and nd geometrical aspects of adaptive mesh refinement. This book should be of interest to readers actively working in the field as well as readers seeking a comprehensive introduction to the topic.
This textbook gives a comprehensive introduction to stochastic processes and calculus in the fields of finance and economics, more specifically mathematical finance and time series econometrics. Over the past decades stochastic calculus and processes have gained great importance, because they play a decisive role in the modeling of financial markets and as a basis for modern time series econometrics. Mathematical theory is applied to solve stochastic differential equations and to derive limiting results for statistical inference on nonstationary processes. This introduction is elementary and rigorous at the same time. On the one hand it gives a basic and illustrative presentation of the relevant topics without using many technical derivations. On the other hand many of the procedures are presented at a technically advanced level: for a thorough understanding, they are to be proven. In order to meet both requirements jointly, the present book is equipped with a lot of challenging problems at the end of each chapter as well as with the corresponding detailed solutions. Thus the virtual text - augmented with more than 60 basic examples and 40 illustrative figures - is rather easy to read while a part of the technical arguments is transferred to the exercise problems and their solutions.
Schr dinger Equations and Diffusion Theory addresses the
question "What is the Schr dinger equation?" in terms of diffusion
processes, and shows that the Schr dinger equation and diffusion
equations in duality are equivalent. In turn, Schr dinger's
conjecture of 1931 is solved. The theory of diffusion processes for
the Schr dinger equation tell us that we must go further into the
theory of systems of (infinitely) many interacting quantum
(diffusion) particles.
Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. In online optimization the main issue is incomplete data, and the scientific challenge: How well can an online algorithm perform? Can one guarantee solution quality, even without knowing all data in advance? In real-time optimization there is an additional requirement, decisions have to be computed very fast in relation to the time frame of the instance we consider. Online and real-time optimization problems occur in all branches of optimization. These areas have developed their own techniques but they are addressing the same issues: quality, stability, and robustness of the solutions. To fertilize this emerging topic of optimization theory and to foster cooperation between the different branches of optimization, the Deutsche Forschungsgemeinschaft (DFG) has supported a Priority Programme "Online Optimization of Large Systems".
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics," such as the characterization of personalities and the difference between a "genius" and a "maniac." Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.
This book presents a selection of papers presented to the Second Inter national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984: to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applications in Reliability and Maintenance, Biomedicine, Queue ing, Control processes and production. A growing field is the one of insurance and finance but this is not really a surprising fact as the problem of pricing derivative products represents now a crucial problem in economics and finance. For example, stochastic models can be applied to financial and insur ance models as we have to evaluate the uncertainty of the future market behavior in order, firstly, to propose different measures for important risks such as the interest risk, the risk of default or the risk of catas trophe and secondly, to describe how to act in order to optimize the situation in time. Recently, the concept of VaR (Value at Risk) was "discovered" in portfolio theory enlarging so the fundamental model of Markowitz."
The theory of Markov Decision Processes - also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming - studies sequential optimization of discrete time stochastic systems. Fundamentally, this is a methodology that examines and analyzes a discrete-time stochastic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. Its objective is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types of impacts: (i) they cost or save time, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view of future events. Markov Decision Processes (MDPs) model this paradigm and provide results on the structure and existence of good policies and on methods for their calculations. MDPs are attractive to many researchers because they are important both from the practical and the intellectual points of view. MDPs provide tools for the solution of important real-life problems. In particular, many business and engineering applications use MDP models. Analysis of various problems arising in MDPs leads to a large variety of interesting mathematical and computational problems. Accordingly, the Handbook of Markov Decision Processes is split into three parts: Part I deals with models with finite state and action spaces and Part II deals with infinite state problems, and Part IIIexamines specific applications. Individual chapters are written by leading experts on the subject.
Control theory has applications to a number of areas in engineering and communication theory. This introductory text on the subject is fairly self-contained and aimed primarily at advanced mathematics and engineering students in various disciplines. The topics covered include realization problems, linear-quadratic optimal control, stability theory, stochastic modeling and recursive estimation algorithms in communications and control, and distributed system modeling. These topics have a wide range of applicability, and provide background for further study in the control and communications areas. In the early chapters the basics of linear control systems as well as the fundamentals of stochastic control are presented in a unique way so that the methods generalize to a useful class of distributed parameter and nonlinear system models. The control of distributed parameter systems (systems governed by PDEs) is based on the framework of linear quadratic Gaussian optimization problems. The approach here utilizes methods based on Wiener-Hopf integral equations. Additionally, the important notion of state space modeling of distributed systems is examined. Basic results due to Gohberg and Krein on convolution are given and many results are illustrated with some examples that carry throughout the text. The standard linear regulator problem is studied in both the continuous and discrete time cases, followed by a discussion of the (dual) filtering problems. Later chapters treat the stationary regulator and filtering problems with a Wiener-Hopf approach. This leads to spectral factorization problems and useful iterative algorithms that follow naturally from the methods employed. Theinterplay between time and frequency domain approaches is emphasized.
Statistical methods are becoming more important in all biological fields of study. Biometry deals with the application of mathematical techniques to the quantitative study of varying characteristics of organisms, populations, species, etc. This book uses examples based on genuine data carefully chosen by the author for their special biological significance. The chapters cover a broad spectrum of topics and bridge the gap between introductory biological statistics and advanced approaches such as multivariate techniques and nonlinear models. A set of statistical tables most frequently used in biometry completes the book.
The first edition of this book entitled Analysis on Riemannian Manifolds and Some Problems of Mathematical Physics was published by Voronezh Univer sity Press in 1989. For its English edition, the book has been substantially revised and expanded. In particular, new material has been added to Sections 19 and 20. I am grateful to Viktor L. Ginzburg for his hard work on the transla tion and for writing Appendix F, and to Tomasz Zastawniak for his numerous suggestions. My special thanks go to the referee for his valuable remarks on the theory of stochastic processes. Finally, I would like to acknowledge the support of the AMS fSU Aid Fund and the International Science Foundation (Grant NZBOOO), which made possible my work on some of the new results included in the English edition of the book. Voronezh, Russia Yuri Gliklikh September, 1995 Preface to the Russian Edition The present book is apparently the first in monographic literature in which a common treatment is given to three areas of global analysis previously consid ered quite distant from each other, namely, differential geometry and classical mechanics, stochastic differential geometry and statistical and quantum me chanics, and infinite-dimensional differential geometry of groups of diffeomor phisms and hydrodynamics. The unification of these topics under the cover of one book appears, however, quite natural, since the exposition is based on a geometrically invariant form of the Newton equation and its analogs taken as a fundamental law of motion."
'An authoritative survey with exciting new insights of special interest to economists and econometricians who analyse intertemporal and interspatial price relationships.' - Professor Angus Maddison, Groningen University This book presents a comprehensive review of recent developments in the theory and construction of index numbers using the stochastic approach, demonstrating the versatility of this approach in handling various index number problems within a single conceptual framework. It also contains a brief, but complete, review of the existing approaches to index numbers with illustrative numerical examples. The stochastic approach considers the index number problem as a signal extraction problem. The strength and reliability of the signal extracted from price and quantity changes for different commodities depends upon the messages received and the information content of the messages. The most important applications of the new approach are to be found in the context of measuring rate of inflation; fixed and chain base index numbers for temporal comparisons and for spatial intercountry comparisons; the latter generally require special index number formulae that result in transitive and base invariant comparisons.
High dimensional probability, in the sense that encompasses the topics rep resented in this volume, began about thirty years ago with research in two related areas: limit theorems for sums of independent Banach space valued random vectors and general Gaussian processes. An important feature in these past research studies has been the fact that they highlighted the es sential probabilistic nature of the problems considered. In part, this was because, by working on a general Banach space, one had to discard the extra, and often extraneous, structure imposed by random variables taking values in a Euclidean space, or by processes being indexed by sets in R or Rd. Doing this led to striking advances, particularly in Gaussian process theory. It also led to the creation or introduction of powerful new tools, such as randomization, decoupling, moment and exponential inequalities, chaining, isoperimetry and concentration of measure, which apply to areas well beyond those for which they were created. The general theory of em pirical processes, with its vast applications in statistics, the study of local times of Markov processes, certain problems in harmonic analysis, and the general theory of stochastic processes are just several of the broad areas in which Gaussian process techniques and techniques from probability in Banach spaces have made a substantial impact. Parallel to this work on probability in Banach spaces, classical proba bility and empirical process theory were enriched by the development of powerful results in strong approximations."
"Et moi, ... si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais poin t aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. H ea viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service. topology has rendered mathematical physics .. .' 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d 'e1: re of this series."
This book grew out of the discussions and presentations that began during the Workshop on Emerging and Reemerging Diseases (May 17-21, 1999) sponsored by the Institute for Mathematics and its Application (IMA) at the University of Minnesota with the support of NIH and NSF. The workshop started with a two-day tutorial session directed to ecologists, epidemiologists, immunologists, mathematicians, and scientists interested in the study of disease dynamics. The core of this second volume, Volume 126, covers research contributions on the use of dynamical systems (deterministic discrete, delay, PDEs, and ODEs models) and stochastic models in disease dynamics. Contributions motivated by the study of diseases like influenza, HIV, tuberculosis, and macroparasitic like schistosomiasis are also included. This second volume requires additional mathematical sophistication, and graduate students in applied mathematics, scientists in the natural, social, and health sciences, or mathematicians who want to enter the field of mathematical and theoretical epidemiology will find it useful. The collection of contributors includes many who have been in the forefront of the development of the subject.
The past several years have seen the creation and extension of a very conclusive theory of statistics and probability. Many of the research workers who have been concerned with both probability and statistics felt the need for meetings that provide an opportunity for personal con tacts among scholars whose fields of specialization cover broad spectra in both statistics and probability: to discuss major open problems and new solutions, and to provide encouragement for further research through the lectures of carefully selected scholars, moreover to introduce to younger colleagues the latest research techniques and thus to stimulate their interest in research. To meet these goals, the series of Pannonian Symposia on Mathematical Statistics was organized, beginning in the year 1979: the first, second and fourth one in Bad Tatzmannsdorf, Burgenland, Austria, the third and fifth in Visegrad, Hungary. The Sixth Pannonian Symposium was held in Bad Tatzmannsdorf again, in the time between 14 and 20 September 1986, under the auspices of Dr. Heinz FISCHER, Federal Minister of Science and Research, Theodor KERY, President of the State Government of Burgenland, Dr. Franz SAUERZOPF, Vice-President of the State Govern ment of Burgenland and Dr. Josef SCHMIDL, President of the Austrian Sta tistical Central Office. The members of the Honorary Committee were Pal ERDOS, WXadisXaw ORLICZ, Pal REVESz, Leopold SCHMETTERER and Istvan VINCZE; those of the Organizing Committee were Wilfried GROSSMANN (Uni versity of Vienna), Franz KONECNY (University of Agriculture of Vienna) and, as the chairman, Wolfgang WERTZ (Technical University of Vienna)."
The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology. This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and represent some of the most recent developments in this field. The book consists of 21 chapters which can be grouped into several thematic topics including dynamic analysis of stochastic systems, reliability-based design, structural control and health monitoring, model updating, system identification, wave propagation in random media, seismic fragility analysis and damage assessment. This edited book is primarily intended for researchers and post-graduate students who are familiar with the fundamentals and wish to study or to advance the state of the art on a particular topic in the field of computational stochastic structural dynamics. Nevertheless, practicing engineers could benefit as well from it as most code provisions tend to incorporate probabilistic concepts in the analysis and design of structures. "
Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.
Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
Aims to give to the reader the tools necessary to apply semi-Markov processes in real-life problems. The book is self-contained and, starting from a low level of probability concepts, gradually brings the reader to a deep knowledge of semi-Markov processes. Presents homogeneous and non-homogeneous semi-Markov processes, as well as Markov and semi-Markov rewards processes. The concepts are fundamental for many applications, but they are not as thoroughly presented in other books on the subject as they are here.
Advances in Stochastic Modelling and Data Analysis presents the most recent developments in the field, together with their applications, mainly in the areas of insurance, finance, forecasting and marketing. In addition, the possible interactions between data analysis, artificial intelligence, decision support systems and multicriteria analysis are examined by top researchers. Audience: A wide readership drawn from theoretical and applied mathematicians, such as operations researchers, management scientists, statisticians, computer scientists, bankers, marketing managers, forecasters, and scientific societies such as EURO and TIMS. |
You may like...
Stochastic Numerical Methods - An…
Raul Toral, Pere Colet
Paperback
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,500
Discovery Miles 25 000
Optimization, Dynamics and Economic…
Engelbert J. Dockner, R.F. Hartl, …
Hardcover
R2,425
Discovery Miles 24 250
Synchronization in Infinite-Dimensional…
Igor Chueshov, Bjoern Schmalfuss
Hardcover
R3,555
Discovery Miles 35 550
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
Stochastic Analysis and Applications in…
Ana Isabel Cardoso, Margarida de Faria, …
Hardcover
R2,534
Discovery Miles 25 340
Research Problems in Function Theory…
Walter K Hayman, Eleanor F. Lingham
Hardcover
|