![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Surface chemistry & adsorption
Phenomena associated with the adhesion interaction of surfaces have been a critical aspect of micro- and nanosystem development and performance since the first MicroElectroMechanicalSystems(MEMS) were fabricated. These phenomena are ubiquitous in nature and are present in all systems, however MEMS devices are particularly sensitive to their effects owing to their small size and limited actuation force that can be generated. Extension of MEMS technology concepts to the nanoscale and development of NanoElectroMechanicalSystems(NEMS) will result in systems even more strongly influenced by surface forces. The book is divided into five parts as follows: Part 1: Understanding Through Continuum Theory; Part 2: Computer Simulation of Interfaces; Part 3: Adhesion and Friction Measurements; Part 4: Adhesion in Practical Applications; and Part 5: Adhesion Mitigation Strategies. This compilation constitutes the first book on this extremely important topic in the burgeoning field of MEMS/NEMS. It is obvious from the topics covered in this book that bountiful information is contained here covering understanding of surface forces and adhesion as well as novel ways to mitigate adhesion in MEMS/NEMS. This book should be of great interest to anyone engaged in the wonderful and fascinating field of MEMS/NEMS, as it captures the current R&D activity.
The study of the interaction of molecules with surfaces and interfaces is of great importance for the understanding of adsorption and catalysis on solid surfaces, the complex properties of molecules on fluid interfaces and the relationship between structure and functionality in macromolecular biological systens. It is the aim of this volume to present and analyse in a comprehensive and accesible way the methodical achievements and the recent proress in this field. The broadness of both scope and selection of the topics should help in particular non-expert readers to become familiar with this exciting field of research.
Membranemimetic Approach to Nanotechnology (J.H. Fendler). Amphipathic Chitosan Salts (T. Rathke, S.M. Hudson). Chemical Antopoiesis: Selfreplication of Micelles and Vesicles (P. Walde et al.). Simple Models for the Stratim Corneum Lipids (S.E. Friberg, Z. Ma). Photothermal Effect in Organized Media: Principles and Applications (C.D. Tran). Role of Polypyrolle in Improving the Communication Ability of Metallic Electrodes with Organic Molecules (L. Jiang, Q. Chen). Enhancement Effects of Surfactants in Flame Atomic Absorption Analysis (D.Y. Pharr). The Effect of Cationic Electrolytes on the Electrostatic Force between Two Dissimilar Ionizable Surfaces (Y.I. Chang). Characterization of Colloidal Aggregates (E.Y. Sheu). Polymerizable Phopholipids: Versatile Building Blocks for Novel Biomaterials (A. Singh, J.M. Schnur). Cellular Adhesion to Solid Surface: Effect of the Presence of Cationic Electrolytes in the Suspension Medium (Y.I. Chang, J.P. Hsu). Applications of Bacteriorhodopsin in Membrane Mimetic Chemistry (M.S. Lin, E. Premuzic). 4 additional articles. Index.
Fine Particles Science and Technology deals with the preparation, characterization and technological applications of monodisperse particles in the micro to nano size range. A broad view of this frontier field is given, covering understanding the mechanisms by which uniform fine particles are formed and the search for new processes; the mechanism of the precipitation technique, requiring knowledge of the relationship between the complex solution chemistry and the products formed; the sequence of events leading to the formation of monodisperse colloids. The following topics are presented: microparticles, nanoparticles, applications in the preparation of materials, synthesis and properties, environmental applications, and many others.
This volume documents the scientific events of the NATO Advanced Research Workshop (ARW) on The Preparation of Nanoparticles in Solutions and in Solids. The ARW was held in the second largest city in Hungary, Szeged, truthfully referred to as "the city of sunshine," from March 8 to March 13, 1996. The seventy-seven participants, including seventeen students, came from twentyone different countries. Housing all participants together and arranging a number of social activities fostered lively discussions both inside and outside of formal sessions. Twenty-one key lectures were presented in five sessions. Each session was followed by a fortyfive minutes of general discussion. One evening was devoted to the presentation of fifty-five posters. Thirty-two contribution were submitted and accepted for publication in the present volume. The volume also contains the minutes of the discussions, and a summary of the conclusions of the working groups. The ARW was organized under the auspices and financial support of NATO, City of Szeged, European Research Office of the US Army, Hungarian Academy of Sciences, Hungarian National Committee for Technological Development (OMBF), International Association of Colloid and Interface Scientists IACIS, and National Science Foundation (NSF). Both the organizers and participants gratefully acknowledge the generous support of the agencies. The Editors also thank the high quality and creative contributions of the participants. It is they who made this volume a reality. Janos H. fendler Irnre Dekany ix Glossary of Some Names and Acronyms Advanced Materials Man-made materials having superior mechanical, thennal, electrical, optical, and other desirable properties.
This book has its origins in the 1982 Spring College held at the Interna tional Centre for Theoretical Physics, Miramare, Trieste. The primary aim is to give a broad coverage of liquids and amorphous solids, at a level suitable for graduate students and research workers in condensed-matter physics, physical chemistry, and materials science. The book is intended for experimental workers with interests in the basic theory. While the topics covered are many, it was planned to place special emphasis on both static structure and dynamics, including electronic transport. This emphasis is evident from the rather complete coverage of the determination of static structure from both diffraction experiments and, for amorphous solids especially, from model building. The theory of the structure of liquids and liquid mixtures is then dealt with from the standpoint of, first, basic statistical mechanics and, subsequently, pair potentials constructed from the electron theory of simple metals and their alloys. The discussion of static structure is completed in two chapters with rather different emphases on liquid surfaces and interfaces. The first deals with the basic statistical mechanics of neutral and charged interfaces, while the second is concerned with solvation and double-layer effects. Dynamic structure is introduced by a comprehensive discussion of single-particle motion in liquids. This is followed by the structure and dynamics of charged fluids, where again much basic statistical mechanics is developed."
The history of the liquid-liquid interface on the earth might be as old as that of the liquid. It is plausible that the generation of the primitive cell membrane is responsible for an accidental advent of the oldest liquid interfaces, since various compounds can be concentrated by an adsorption at the interface. The presence of liquid-liquid interface means that real liquids are far from ideal liquids that must be miscible with any kinds of liquids and have no interface. Thus it can be said that the non-ideality of liquids might generate the liquid-liquid interface indeed and that biological systems might be generated from the non-ideal interface. The liquid-liquid interface has been, therefore, studied as a model of biological membrane. From pairing two-phases of gas, liquid and solid, nine different pairs can be obtained, which include three homo-pairs of gas-gas, liquid-liquid and solid-solid pairs. The gas-gas interface, however, is practically no use under the ordinary conditions. Among the interfaces produced by the pairing, the liquid-liquid interface is most slippery and difficult to be studied experimentally in comparison with the gas-liquid and solid-liquid interfaces, as the liquid-liquid interface is flexible, thin and buried between bulk liquid phases. Therefore, in order to study the liquid-liquid interface, the invention of innovative measurement methods has a primary importance.
"Discusses the most recent advances in the correlations of structure and reactivity relationships of micelles, liposomes, microemulsions, and emulsions by thermal behavior measurements, as well as the options, scope, and limitations of the thermal behavior of dispersed systems. Highlights current studies on heterogeneous colloidal (dispersed) systems."
This volume provides the latest developments in the field of surface science and technology based on diazonium coupling agents as well as their precursors (e.g. aromatic amines). It presents new concepts of surface chemistry of diazonium salts and discusses their novel and challenging applications. The latest advances on surface modification with diazonium salts are discussed and various promising alternative surface modifiers such as iodonium salts are examined. This book demonstrates the universality of diazonium salts in the surface treatment of classical and emergent materials and it will be a great tool for researcher and graduates working in this field.
Volume 3, like the preceding volumes, focuses on the diversity of surfactants, both in terms of chemical structure and physico-chemical / surface active properties. These properties may be predictable for simple molecules but, for most commercial surfactants (which may be regarded as multi-component blends), this is not so easy. Yet it is important to develop a greater understanding of the interactions within a multi-component mixture, in order to select the most appropriate product for a particular application in which a combination of surface active properties is required. A special feature of this volume is the initial chapter, in which the end uses of surface active agents are classified by industrial sector and the surfactant properties required for each application are presented in detail. The result is a unique guide to the influence of chemical structure on performance in end use, highlighting the benefits of particular surfactants and illustrating how some of the newer classes of surfactant may overcome the deficiencies of previously used products.
Industrial products that are made from, or contain, nitrogen are described in parts of some encyclopedias and standard reference works. However it is not always simple to determine from these varied sources the present status of the technology and markets for various nitrogen products. We therefore perceived a need for a text that provides a comprehensive description of: 1) products that are made from or that contain nitrogen; 2) the processes that produce these products; and 3) the markets that consume these products. I have attempted to present the material in a standardized format that should make this book easy to use and helpful to the readers. The standard format for each product is: Introduction, Process, Production, and Uses, with some variations in different chapters. This book provides information that could be used by a wide range of readers: Fertilizer companies to evaluate different production processes and review general trends in the market. Basic chemical companies to evaluate different production processes and review general trends in the market. Specialty chemical companies to investigate new chemical production and/or sales opportunities and the processes that could make those sales a possibility. Chemical distributors to obtain a feel for the general market size for some chemicals and the basic handling and distribution procedures for various chemicals. Engineering Companies to evaluate different production processes and review general trends in the market. Engineering and Chemistry Students to learn more about practical applications of the principals that they have experienced in their classrooms and laboratories."
"Progresses from theoretical issues to applications. Contains a historical overview, in-depth considerations of various scenarios of silica adsorption, and results from the latest research. Invaluable for broad coverage of the expanding field of silica research."
An introduction to the most important fundamental concepts of physicochemical interface science and a description of experimental techniques and applications of surface science in relation to biological systems. It explores artificial assemblies of lipids, proteins and polysaccharides that perform novel functions that living systems cannot duplicate.
The investigative assault upon the enigmatic asphaltenes has recently resulted in sig nificant advances in many varied disciplines. Taken individually, each discipline exposes certain facets of asphaltenes, but each, alone, can never reveal asphaltenes from all van tages. Even seemingly narrowly focused issues such as the molecular structures of asphal tenes, or the colloidal structures of asphaltenes require a confluence of many lines of investigation to yield an understanding which differs from truth by diminishing uncer tainty. An holistic treatment of the asphaltenes is a powerful approach to evolve further their understanding. For example, examination of asphaltenes at the highest resolution yields molecular structure. A slight increase in scale probes asphaltene colloidal structure. Weaving together asphaltene studies performed at different length scales results in a fabric which envelops an encompassing vision of asphaltenes. At the same time, the interfaces of these hierarchical studies provide additional constraints on imagination, more than investi gations at individual length scales alone. These considerations shaped the timing, format, and the content of our book. The editors are very appreciative of the diligence and hard work manifest in each of the contributed chapters herein. We thank the contributing authors for making this project a success. Oliver C. Mullins Eric Y. Sheu vii CONTENTS I. Asphaltenes: Types and Sources ...................................... ."
This thesis investigates the effect of the magnetic field on propagating surface plasmon polaritons (SPPs), or surface plasmons for short. Above all, it focuses on using the magnetic field as an external agent to modify the properties of the SPPs, and therefore achieving active devices. Surface plasmons are evanescent waves that arise at metal-dielectric interfaces. They can be strongly confined (beyond the light diffraction limit), and provide a strong enhancement of the electromagnetic field at the interface. These waves have led to the development of plasmonic circuitry, which is a key candidate as an alternative to electronic circuitry and traditional optical telecommunication devices, since it is faster than the former and less bulky than the latter. Adopting both a theoretical and an experimental point of view, the book analyzes the magnetic modulation in SPPs by means of an interferometer engraved in a multilayer combining Au and Co. In this interferometer, which acts like a modulator, the SPP magnetic modulation is studied in detail, as are the parameters that have a relevant impact on it, simple ways to enhance it, its spectral dependence, and the highly promising possibility of using this system for biosensing. The thesis ultimately arrives at the conclusion that this method can provide values of modulations similar to other active methods used in plasmonics.
The fundamental side of this book covers general aspects of stability, interfacial adsorption mechanisms, interfacial rheology, direct measurements of surface forces and the bulk rheological properties of emulsions, and self-diffusion properties as measured by NMR. The applications side covers the fields of food, crude oil and pharmaceutical emulsions. A central topic in the study of food emulsions is the role played by proteins at the water/oil interface, their conformations, and the mechanism by which they can be replaced at the interface (competitive adsorption). The mechanisms underlying the resolution of water are of crucial importance in the study of water-in-crude-oil emulsions. The book therefore discusses the characterization of the stabilizing asphaltene fraction, the physiochemical properties of destabilizing surfactants, and the interplay between asphaltenes and waxes at the W/O interface. The structures of pharmaceutical emulsions and creams are characterized, as well as nonionic vesicle drug administration systems. Finally, fluorocarbon emulsions acting as blood substitutes are also discussed.
At the beginning of the twentieth century, engineers and technologists would have recognized the importance of adhesion in two main aspects: First, in the display of friction between surfaces - at the time a topic of growing importance to engineers; the second in crafts requiring the joining of materials - principally wood-to form engineering structures. While physical scientists would have admitted the adhesive properties of glues, gels, and certain pastes, they regarded them as materials of uncertain formulation, too impure to be amenable to precise experiment. Biological scientists were aware also of adhesive phenomena, but the science was supported by documentation rather than understanding. By the end of the century, adhesion and adhesives were playing a crucial and deliberate role in the formulation of materials, in the design and manufacture of engineering structures without weakening rivets or pins, and in the use of thin sections and intricate shapes. Miniaturization down to the micro- and now to the nano-level of mechanical, electrical, electronic, and optical devices relied heavily on the understanding and the technology of adhesion. For most of the century, physical scientists were aware that the states of matter, whether gas, liquid, or solid, were determined by the competition between thermal energy and int- molecular binding forces. Then the solid state had to be differentiated into crystals, amorphous glasses, metals, etc. , so the importance of the molecular attractions in determining stiffness and strength became clearer.
'IHE CURRENT STATE OF 'IHE AID' of several aspects of water-based coatings and printing processes is presented in this voltnne. It documents the proceedings of the Intemationl Syrrposium on Surface RJ. enornena and Fine Particles in Water-Based Coatings and Printing Teclmology sponsored by the Fine Particle Society (FPS). '!his meeting was held in Boston, Massachusetts, August 21-25, 1989. '!he syrrp:>sium upon which this voltnne is based was organized in six sessions errphasizing various basic and applied areas of research on water-based technology. Major topics discussed involve surface phenomena in coatings, printing defects and their remedies, surface tension effects in water-based coatings and printing inks, surface energies of polymer substrates, wettability, aqueous polymeric film coating of pharmaceuticals, flexographic and gravure printing processes, characterization of coating materials, pigment dispersion, wax emulsions for surface modifications, and the role of polymer in particle/surface deposition. '!his edition includes the twenty four selected papers presented in the syrrp:>sium. '!hese papers are divided in three broad categories: (1) Water-Based Inks and Coatings, (2) Emulsions and Adhesion in Coatings, and (3) Characterization of Coating and Printing Materials. Several types of coating and printing on different substrates using water-based fonnulations with special reference to surface phenomena and particle technology are described in these sections. This proceedings vo1tnne includes discussions of various processes occuring at llIOlecular, microscopic, and macroscopic levels in water-based coatings and printing processes.
The purpose of this book is to stimulate thinking among corrosion scientists and engineers to examine corrosion mechanisms and corro sion control from another perspective. While the presence of corro sion films in electrochemical corrosion has been recognized for over a century, the contribution of these films to all facets of corrosion has not been explored to a significant degree. Rather the role of films in certain mechanisms (i.e., stress corrosion cracking) has been empha sized, yet almost ignored for other corrosion mechanisms. This is viewed by the author as solely attributable to the lack of investigation into, and an understanding of, the contribution of films to these mech anisms or forms of attack. The lack of emphasis and study of corrosion films and their contribution to all forms of corrosion attack are probably the result of current university instruction that utilizes two popular corrosion texts (Uhlig and Fontana and Greene) for teaching. These texts provide an excellent understanding at the undergraduate level of corrosion funda mentals; however, the major implicit premise in these texts is that bulk properties of an alloy or metal control the corrosion resistance in a particular environment. For many applications and for a simple under standing of corrosion mechanics, this approach is sufficient. Yet, research on corrosion films indicate these films often have an entirely different composition than the bulk metal (ratio of alloying elements)."
This book takes an interface science approach to describe and understand the behavior of the dispersions we call emulsions, microemulsions and foams. The one thing all these dispersions have in common is the presence of surface-active species (surfactants) adsorbed at the interfaces between the two fluid phases that make up the emulsions, microemulsions or foams. The interfacial layers formed by the surfactants control most of the properties of the dispersions. The book describes the properties of interfacial layers, thin films and bulk fluids used in the elaboration of the various dispersions and it explains how such properties relate to the dispersion properties of these soft matter systems: structure, rheology and stability. These dispersion properties are far from being fully understood, in particular foam and emulsion stability. In discussing the state of the art of the current knowledge, the author draws interesting parallels between emulsions, microemulsions and foams that enlighten the interpretation of previous observations and point to a deeper understanding of the behavior of these materials in the future.
This monograph discusses the essential principles of the evaporationprocess by looking at it at the molecular and atomic level. In the first part methods of statistical physics, physical kinetics andnumerical modeling are outlined including the Maxwell's distributionfunction, the Boltzmann kinetic equation, the Vlasov approach, and theCUDA technique. The distribution functions of evaporating particles are then defined.Experimental results on the evaporation coefficient and the temperaturejump on the evaporation surface are critically reviewed and compared tothe theory and numerical results presented in previous chapters. The book ends with a chapter devoted to evaporation in differentprocesses, such as boiling and cavitation.This monograph addressesgraduate students and researchers working on phase transitions andrelated fields.
Handbook of Modern Coating Technologies: Application and Development reviews recent applications and developments of modern coating technologies. The topics in this volume consist of role of antibacterial coatings in the development of biomaterials, insights of technologies for self-healing organic coatings, sensor applications, application of carbon nanotubes-based coating in the field of art conservation, oxide-based self-cleaning and corrosion-protective coatings, protective coatings for wood, applications of optical coatings on spectral selective structures, application of natural antimicrobial coating for controlling foodborne pathogens on meat and fresh produce, efficacy of antimicrobial coating in reducing pathogens on meat, composite membrane: fabrication, characterization, and applications, development of nanostructured HVOF coatings on high strength steel components for turbine blades, nanoscale multilayered composite coating, applications of sol-gel coatings, application of graphene in protective coating industry, application of coatings in outdoor high-voltage installations, defects and doping effects in thin films of transparent and conductive oxides, and functional coatings for lab-on-a-chip systems based on phospholipid polymers.
Handbook of Modern Coating Technologies: Fabrication Methods and Functional Properties reviews different fabrication methods and functional properties of modern coating technologies. The topics in this volume consist of nanocoatings by sol-gel processes for functionalization of polymer surfaces and textiles and mechanical fabrication methods of nanostructured surfaces such surface mechanical attrition treatment, polymer nanofabrications and its plasma processing, chemical vapor deposition of oxide materials at atmospheric pressure, conventional chemical vapor deposition process at atmospheric pressure, feasibility of atmospheric pressure, chemical vapor deposition process, Langmuir-Blodgett technique, flame pyrolysis, confined-plume chemical deposition, electrophoretic deposition, in vitro and in vivo particle coating for oral targeting and drug delivery, novel coatings to improve the performance of multilayer biopolymeric films for food packaging, corrosion protection by nanostructured coatings, tribological behavior of electroless coatings, effect of peening-based processes on tribological and mechanical behavior of bioimplant materials, improved efficiency of ceramic cutting tools in machining hardened steel with nanostructured multilayered coatings, incorporation of elastomeric secondary phase into epoxy matrix influences mechanical properties of epoxy coatings, enhancement of biocompatibility by coatings, porous hydroxyapatite-based coatings, and bionic colloidal crystal coatings.
Monomolecular assemblies on substrates, now termed Langmuir-Blodgett (LB) films, have been studied for over half a century. Their development can be viewed in three stages. Following the pioneering work of Irving Langmuir and Katharine Blodgett in the late 1930s there was a brief flurry of activity just before and just after the Second World War. Many years later Hans Kuhn published his stimulating work on energy transfer. This German contribution to the field, made in the mid-1960s, can be regarded as laying the foundation for studies of artificial systems of cooperat ing molecules on solid substrates. However, the resurgence of activity in academic and industrial laboratories, which has resulted in four large international con ferences, would not have occurred but for British and French groups highlighting the possible applications of LB films in thefield of electronics. Many academic and industrial establishments involved in high technology are now active in or maintaining a watching brief on the field. Nevertheless this impor tant area of solid state science is still perhaps largely unfamiliar to many involved in materials or electronic device research. The richness of the variety of organic molecular materials suitable for LB film deposition offers enormous scope for those interested in their basic properties or their practical applications. LB films are now an integral part of the field of molecular electronics. It seems inevitable that they will play some role in replacing inorganic materials in certain areas of application." |
![]() ![]() You may like...
Excavating Memory - Sites of Remembering…
Maria Theresia Starzmann, John R Roby
Hardcover
R2,701
Discovery Miles 27 010
The Oxford Handbook of Material Culture…
Dan Hicks, Mary C. Beaudry
Hardcover
R4,832
Discovery Miles 48 320
The Oxford Handbook of German Philosophy…
Michael N. Forster, Kristin Gjesdal
Hardcover
R4,838
Discovery Miles 48 380
|