![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Surface chemistry & adsorption
THE CURRENT STATE OF THE ART of waterborne polymers, paints, coatings, inks and printing processes is presented in this volume. This is the third volume in the series on waterborne coating and printing technology. It documents several invited papers and the proceedings of the International Symposium on Surface Phenomena and Latexes in Waterborne Coatings and printing Technology sponsored by the Fine Particle Society (FPS). The FPS meeting was held in Las Vegas, Nevada, July 13-17, 1992. The volume deals with various basic and applied aspects of research on waterborne coating printing technology. Major topics discussed involve waterborne polymers and polymer blends, pigment grinding, millbases, paint formulation, and characterization of coating films. This edition includes sixteen selected papers related to recent developments in waterborne technology. These papers are divided in three broad categories: (1) Waterborne Polymers and pigment Dispersions, (2) Latex Film, Wetting Phenomena and Printing Gloss, (3) Surfactants and Polymers in Aqueous Coating printing Systems. This volume includes discussions of various waterborne polymers in coating printing systems. The editors hope that this volume will serve its intended objective of reflecting the current understanding of formulation and process problems related to waterborne coatings, paints and inks. In addition, it will be a valuable reference source for both novices as well as experts in the field of waterborne technology. It will also help the readers to understand underlying surface phenomena and will enhance the reader's potential for solving critical formulation, evaluation and process problems.
X-Ray Scattering from Surfaces and Interfaces; R.A. Cowley. Scanning Tunneling Microscopy; H. Niehus. Atomistic Simulations of Surfaces and Interfaces; S. Foiles. Theory of Electron States at Surfaces and Interfaces; M. Schluter. Embedding for Surfaces and Interfaces; J.E. Inglesfield. Magnetic Phase Transitions at and Between Interfaces; B.L. Gyorffy, C. Walden. Surfaces and Magnetic Effects in Core Level Photoemission; P.J. Durham. Low Energy Ion Scattering at Extremely Low Ion Doses; R.G. van Welzenis, et al. X-Ray and Light Scattering Studies of Electrode Surfaces and Interfaces; C.A. Melendres. Point to Point Resolution in Scanning Auger Electron Spectroscopy at High-Energy Primary Beam Energies for Surface and Interface Analysis; A.G. Nassiopoulos, N.M. Glezos. Volume and Interfacial Properties of Metal/Rare Earth Oxide/Metal Structures; T. Wiktorczyk. The Real-Space Multiple-Scattering Theory; E.C. Sowa, et al. 10 additional articles. Index.
A detailed treatment of information relating to fluid-oxide interfaces. It outlines methods for quantifying adsorption and desorption of polymeric and non-polymeric solutes at the gas- and solution-oxide interfaces. It also analyzes novel properties of oxide membranes and the synthesis and dissolution of oxide solids.
Handbook of Modern Coating Technologies: Fabrication Methods and Functional Properties reviews different fabrication methods and functional properties of modern coating technologies. The topics in this volume consist of nanocoatings by sol-gel processes for functionalization of polymer surfaces and textiles and mechanical fabrication methods of nanostructured surfaces such surface mechanical attrition treatment, polymer nanofabrications and its plasma processing, chemical vapor deposition of oxide materials at atmospheric pressure, conventional chemical vapor deposition process at atmospheric pressure, feasibility of atmospheric pressure, chemical vapor deposition process, Langmuir-Blodgett technique, flame pyrolysis, confined-plume chemical deposition, electrophoretic deposition, in vitro and in vivo particle coating for oral targeting and drug delivery, novel coatings to improve the performance of multilayer biopolymeric films for food packaging, corrosion protection by nanostructured coatings, tribological behavior of electroless coatings, effect of peening-based processes on tribological and mechanical behavior of bioimplant materials, improved efficiency of ceramic cutting tools in machining hardened steel with nanostructured multilayered coatings, incorporation of elastomeric secondary phase into epoxy matrix influences mechanical properties of epoxy coatings, enhancement of biocompatibility by coatings, porous hydroxyapatite-based coatings, and bionic colloidal crystal coatings.
Unique in focus, Surface Chemistry and Geochemistry of Hydraulic Fracturing examines the surface chemistry and phenomena in the hydrofracking process. Under great scrutiny as of late, the physico-chemical properties of hydrofracking are fully detailed and explained. Topics include the adsorption-desorption of gas on the shale reservoir surface and relevant waste-water treatment dependent on various surface chemistry principles. The aim of this book is to help engineers and research scientists recognize the basic surface chemistry principles related to this subject. Written by a long-time expert in the field, this book presents an unbiased account of the hard science and engineering involved in a resource that is gaining growing attention within the community.
The study of capillarity is in the midst of a veritable explosion. Hence the temptation to write a new book, aiming at an audience of students. What is offered here is not a comprehensive review of the latest research but rather a compendium of principles. How does one turn a hydrophilic surface into one that is hydrophobic, and vice versa? We will describe a few solutions. Some rely on chemical treatments, such as coating a surface with a molecular layer. Others are based on physics, for instance by controlling the roughness of a surface. We will also examine the dynamics of wetting. Drops that spread spontaneously do so at a rate that slows down with time. They can be tricked into covering large areas by spreading them suddenly. We will describe a few of the many facets of their dynamical properties. Special additives are required for water to foam. Foams are desirable in a shampoo but can be a nightmare in a dishwasher detergent. Antifoam agents have been developed and are well known, but how do they work? It is also possible to generate bubbles and foams without special additives, for example in pure and viscous liquids such as glycerin, molten glass, and polymers. As we will see, the laws of draining and bursting then turn out to be quite different from the conventional ones. This book will enable the reader to understand in simple terms such questions that affect every day life -- questions that also come up during in industry. The aim is to view systems that often prove quite complex in a way that isolates a particular physical phenomenon, often avoiding descriptions requiring advanced numerical techniques will oftentimes in favor of qualitative arguments. This strategy may at times jeopardize scientific rigor, but it makes it possible to grasp things efficiently and to invent novel situations.
Semiconductor Surfaces and Interfaces deals with structural and electronic properties of semiconductor surfaces and interfaces. The first part introduces the general aspects of space-charge layers, of clean-surface and adatom-induced surfaces states, and of interface states. It is followed by a presentation of experimental results on clean and adatom-covered surfaces which are explained in terms of simple physical and chemical concepts. Where available, results of more refined calculations are considered. This third edition has been thoroughly revised and updated. In particular it now includes an extensive discussion of the band lineup at semiconductor interfaces. The unifying concept is the continuum of interface-induced gap states.
Handbook of Modern Coating Technologies: Application and Development reviews recent applications and developments of modern coating technologies. The topics in this volume consist of role of antibacterial coatings in the development of biomaterials, insights of technologies for self-healing organic coatings, sensor applications, application of carbon nanotubes-based coating in the field of art conservation, oxide-based self-cleaning and corrosion-protective coatings, protective coatings for wood, applications of optical coatings on spectral selective structures, application of natural antimicrobial coating for controlling foodborne pathogens on meat and fresh produce, efficacy of antimicrobial coating in reducing pathogens on meat, composite membrane: fabrication, characterization, and applications, development of nanostructured HVOF coatings on high strength steel components for turbine blades, nanoscale multilayered composite coating, applications of sol-gel coatings, application of graphene in protective coating industry, application of coatings in outdoor high-voltage installations, defects and doping effects in thin films of transparent and conductive oxides, and functional coatings for lab-on-a-chip systems based on phospholipid polymers.
Containing more than 2600 references and over 550 equations, drawings, tables, photographs, and micrographs, This book describes hierarchical assemblies in biology and biological processes that occur at the nanoscale across membranes and at interfaces. It covers recurrent themes in nanocolloid science, including self-assembly, construction of supramolecular architecture, nanoconfinement and compartmentalization, measurement and control of interfacial forces, novel synthetic materials, and computer simulation. The authors reviews surface forces apparatus measurements of two-dimensional organized ensembles at solid-liquid interfaces.
The author integrates discussions of fractal geometry, surface modeling techniques, and applications to real world problems to provide a comprehensive, accessible overview of the field. His work will equip researchers with the basic tools for measurement and interpretation of data, stimulating more work on these problems and, perhaps, leading to an understanding of the reasons that Nature has adopted this geometry to shape much of our world.
This volume is based on lectures given at the NATO-Advanced Study Institute on Structure and Dynamics of Polymer and Colloid Systems held in Les Houches, France from September 14-24, 1999. The meeting arose from a perceived need to bring together scientists studying the polymer and colloid fields. Although these fields are intertwined and share many techniques (e. g. , light, neutron and x-ray scattering), it is remarkable how little the approaches and concepts used by the one field penetrate the other. For instance, the theory of spherical colloids is very highly developed and many of the concepts developed for these systems can be extended to those with non-spherical morphology, such as solutions of rigid rod polymers. In addition, mixtures of polymers and colloids, both in the bulk and at interfaces, are the basis for many industrial products. Methods are now rapidly being developed for understanding the structure and dynamics in polymer/colloid mixtures at the molecular level, but the point of view of the colloid scientist is often rather different from that of the polymer scientist. The NATO-ASI brought together polymer and colloid scientists, including many young researchers, who presented and discussed recent developments in these fields and the possibilities for cross-fertilization This volume contains articles on a wide variety of topics at the research forefront of the polymer and colloid fields by some of the world's foremost experts at a level accessible to graduate students, post-docs and researchers.
Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a detailed and systematic analysis of the properties of ions at the air/water interface. Unifying older and newer theories and measurements, this book emphasizes the contributions of simple ions to surface tension behavior, and the practical consequences. It begins with a general discussion on Gibbs surface thermodynamics, offering a guide to his theoretical insight and formulation of the boundary between fluids. The text then discusses the thermodynamic formulae that are useful for practical experimental work in the analysis of fluid/fluid interfaces. Chapters cover surface tension of pure water at air/water and air/oil interfaces, surface tension of solutions and the thermodynamic quantities associated with the adsorption and desorption of solutes, and surface tension of simple salt solutions. They also address adsorption of ions at the air/water interface, surface tension of solutions and the effect of temperature, adsorption from mixed electrolyte solutions, and thermodynamic properties of zwitterionic amino acids in the surface region. Focusing on the thermodynamic properties of ions at air/fluid interfaces, this book gives scientists a quantitative, rigorous, and objectively experimental methodology they can employ in their research.
This book presents the survismeter, a new invention that widely covers and determines PCPs of various molecules and experimentally measures the thermodynamic and kinetic stabilities of nanoemulsions. It unveils how a survismeter can measure surface tension, interfacial tension, wettability, viscosity, friccohesity, tentropy, rheology, density, activation energy, and particle size. It discusses novel models of molecular science that can be applied in the formulation and study of activities of functional molecules through their PCPs. It also introduces the new concept of friccohesity, which has emerged as an excellent substitute of viscosity and surface tension in experimental measurements as it does not require density measurements. It shows that the science and technology of the survismeter and friccohesity have become an inevitable part of scientific research, substantially integrating the domain of perfect industrial and academic formulations.
Reflection high-energy electron diffraction (RHEED) is the analytical tool of choice for characterizing thin films during growth by molecular beam epitaxy, since it is very sensitive to surface structure and morphology. This book serves as an introduction to RHEED for beginners and describes detailed experimental and theoretical treatments for experts, explaining how to analyze RHEED patterns. For beginners the principles of electron diffraction are explained and many examples of the interpretation of RHEED patterns are described. The second part of the book contains detailed descriptions of RHEED theory. The third part applies RHEED to the determination of surface structures, gives detailed descriptions of the effects of disorder, and critically reviews the mechanisms contributing to RHEED intensity oscillations. This unified and coherent account will appeal to both graduate students and researchers in the study of molecular beam epitaxial growth.
Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS.* Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art* Offers interpretations of SEVS spectra for practicing analysts* Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst
Self-assembly monolayer (SAM) structures of lipids and macromolecules have been found to play an important role in many industrial and biological phenomena. This book describes two procedures, namely the STM and AFM, that are used to study SAMs at solid surfaces. K.S. Birdi examines the SAMs at both liquid and solid surfaces by using the Langmuir monolayer method. This book is intended for researchers, academics and professionals.
The most important aspects of modern surface science are covered. All topics are presented in a concise and clear form accessible to a beginner. At the same time, the coverage is comprehensive and at a high technical level, with emphasis on the fundamental physical principles. Numerous examples, references, practice exercises, and problems complement this remarkably complete treatment, which will also serve as an excellent reference for researchers and practitioners. The textbook is idea for students in engineering and physical sciences.
Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry with up-to-date references and data from real-world examples. This book enables readers to better understand many natural phenomena and industrial processes. Mathematical treatment is mainly given as references to make the material accessible to individuals with a broader range of scientific backgrounds. The book begins by introducing basic considerations with respect to liquid and solid surfaces and describes forces in curved versus flat liquid surfaces. Chapters cover properties of surface active substances, such as surfactants and soaps; lipid films and Langmuir-Blodgett films; and adsorption and desorption on solid surfaces. The author discusses processes involved in liquid-solid interface phenomena, which are utilized in washing, coatings, lubrication, and more, and colloid chemistry systems and related industrial applications such as wastewater treatment. The author also addresses bubbles, films, and foams and the principles of oil-water emulsion science, used in detergents, paints, and skin creams. The final chapter considers more complex applications, for example, food emulsions, scanning probe miscroscopy, the cement industry, and gas and oil recovery.
An advanced exploration ofwater-rock interactions Based on the author's fifteen years of teaching and tried-and-tested experiences in the classroom, here is a comprehensive exploration of water-rock interactions. "Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale" covers aspects ranging from the theory of charged particle surfaces to how minerals grow and dissolve to new frontiers in W-R interactions such as nanoparticles, geomicrobiology, and climate change. Providing basic conceptual understanding along with more complex subject matter, Professor Patricia Maurice encourages students to look beyond the text to ongoing research in the field. Designed to engage the learner, the book features: Numerous case studies to contextualize conceptsPractice and thought questions at the end of each chapterBroad coverage from basic theory to cutting-edge topics such as nanotechnologyBoth basic and applied science This text goes beyond W-R interactions to touch on a broad range of environmental disciplines. While written for advanced undergraduate and graduate students primarily in geochemistry and soil chemistry, "Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale" will serve the needs of such diverse fields as environmental engineering, hydrogeology, physics, biology, and environmental chemistry.
Colloid and surface science is a fascinating interdisciplinary field, where modern development and knowledge of physics, chemistry, biology, material science, pharmacy and engineering have been extensively adopted, with ample scope for fundamental research and extensive potential for application. The progress of research in this important field has been remarkable during the last four decades, and it has greatly benefited society. With a summary of recent advances in this multifaceted field, Recent Trends in Surface and Colloid Science provides critical information and presents the basic concepts of organized systems in relation to their practical significance.
Since the publication of the first edition of Interfacial Phenomena, the interest in interfaces and surfactants has multiplied, along with their applications. Experimental and theoretical advances have provided scientists with greater insight into the structure, properties, and behavior of surfactant and colloid systems. Emphasizing equilibrium phenomena, flow, transport, and stability, Interfacial Phenomena: Equilibrium and Dynamic Effects, Second Edition presents a concise and current summary of the fundamental principles governing interfacial interactions. This new edition features updated and expanded topics in every chapter. It highlights key experimental techniques that have expanded the scope of our understanding, such as in mass transfer, microstructure determination in colloidal dispersions, and surfactant-polymer interactions. Interfacial Phenomena, Second Edition reflects the progress scientists have made in understanding the surface chemistry and interfacial dynamics of colloid and surfactant systems. The book also illustrates the growing applicability of these systems in a variety of fields including pharmaceuticals, cosmetics, detergents, paints, agricultural chemicals, and foods.
A detailed understanding of the chemistry of surfaces and
interfaces is required by many research personnel in the chemical
and life science industries, as surfaces and interfaces play a
critical role in many of the processes they seek to influence.
With principles that are shaping today's most advanced technologies, from nanomedicine to electronic nanorobots, colloid and interface science has become a truly interdisciplinary field, integrating chemistry, physics, and biology. Colloid and Surface Chemistry: Exploration of the Nano World- Laboratory Guide explains the basic principles of colloid and interface science through experiments that emphasize the fundamentals. It bridges the gap between the underlying theory and practical applications of colloid and surface chemistry. Separated into five chapters, the book begins by addressing research methodology, how to design successful experiments, and ethics in science. It also provides practical information on data collection and analysis, keeping a laboratory notebook, and writing laboratory reports. With each section written by a distinguished researcher, chapter 2 reviews common techniques for the characterization and analysis of colloidal structures, including surface tension measurements, viscosity and rheological measurements, electrokinetic methods, scattering and diffraction techniques, and microscopy. Chapters 3-5 provide 19 experiments, each including the purpose of the experiment, background information, pre-laboratory questions, step-by-step procedures, and post-laboratory questions. Chapter 3 contains experiments about colloids and surfaces, such as sedimentation, exploration of wetting phenomena, foam stability, and preparation of miniemulsions. Chapter 4 covers various techniques for the preparation of nanoparticles, including silver, magnetic, and silica nanoparticles. Chapter 5 demonstrates daily-life applications of colloid science, describing the preparation of food colloids, body wash, and body cream.
This indispensable reference features the latest findings surrounding the physicochemical aspects of surfactant and polymer systems to facilitate the design and understanding of novel and advanced drug delivery formulations-highlighting the basics of surfactant and polymer surface activity and self-assembly, the various types of structures formed by such compounds, and how they may be used in drug delivery. Surfactants and Polymers in Drug Delivery discusses solubilization of drugs in micellar systems liquid crystalline phases formed by PEO-PPO-PEO block copolymers and other copolymers and surfactants triggered drug-release from liposome formulations microemulsions formed by ionic and nonionic surfactants microemulsions in oral and topical administration emulsions in parenteral, oral, and dermal drug delivery gels formed by polysaccharides, block copolymers, and polymer-surfactant mixtures chemically cross-linked gels responsive polymer systems in drug delivery experimental techniques for studying drug delivery systems drying of aqueous protein solutions, polymeric two-phase systems, emulsions, and liposomes bioadhesion With nearly 500 references, tables and figures, Surfactants and Polymers in Drug Delivery will benefit surface, pharmaceutical, colloid, polymer, and medicinal chemists; chemical, formulation, and application engineers; and pharmacists; and upper-level undergraduate and graduate students in these disciplines. |
![]() ![]() You may like...
|