![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Surface chemistry & adsorption
This book presents contributions on a wide range of computational research applied to fields ranging from molecular systems to bulk structures. This volume highlights current trends in modern computational chemistry and discusses the development of theoretical methodologies, state-of-the-art computational algorithms and their practical applications. This volume is part of a continuous effort by the editors to document recent advances by prominent researchers in the area of computational chemistry. Most of the chapters are contributed by invited speakers and participants to International annual conference "Current Trends in Computational Chemistry", organized by Jerzy Leszczynski, one of the editors of the current volume. This conference series has become an exciting platform for eminent theoretical and computational chemists to discuss their recent findings and is regularly honored by the presence of Nobel laureates. Topics covered in the book include reactive force-field methodologies, coarse-grained modeling, DNA damage radiosensitizers, modeling and simulation of surfaces and interfaces, non-covalent interactions, and many others. The book is intended for theoretical and computational chemists, physical chemists, material scientists and those who are eager to apply computational chemistry methods to problems of chemical and physical importance. It is a valuable resource for undergraduate, graduate and PhD students as well as for established researchers.
Tailored Thin Coatings for Corrosion Inhibition Using a Molecular Approach discusses the fundamentals and applications of various thin coatings for the inhibition of fouling and corrosion from a molecular perspective. It provides the reader with a fundamental understanding of why certain coatings perform better than others in a given environment. Surface analytical and electrochemical techniques in understanding the coating performance are emphasized throughout the book, providing readers with a useful reference on how to pursue a systematic corrosion inhibitor R&D program that involves the testing of coating performance using various, currently available, state-of-the-art laboratory techniques. Wherever relevant, environmental considerations of the discussed coatings' technologies are highlighted and discussed, with current and upcoming regulatory trends put forth by different governmental organizations.
This book presents recent material science-based and mechanical analysis-based advances in joining processes. It includes all related processes, e.g. friction stir welding, joining by plastic deformation, laser welding, clinch joining, and adhesive bonding, as well as hybrid joints. It gathers selected full-length papers from the 1st Conference on Advanced Joining Processes.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book covers broad aspects of several topics involved in the metrology and measurement of engineering surfaces and their implementation in automotive, bio-manufacturing, chemicals, electronics, energy, construction materials, and other engineering applications. The contents focus on cutting-edge instruments, methods and standards in the field of metrology and mechanical properties of advanced materials. Given the scope of the topics, this book can be useful for students, researchers and professionals interested in the measurement of surfaces, and the applications thereof.
This book introduces the fascinating world of self-assembly in mesoporous ordered silica films. Beginning from a single droplet, it guides the reader, in a step-by-step learning process, how to obtain and control ordered porous mesophases in thin films by varying only the precursor chemistry and the process. It explains, in great detail, how order control is achieved through chemical design and post-deposition processing, the latter of which is a unique property in materials science. The book places a special focus on silica, whose particularly complex chemistry enables order control over a range of different length scales. This book is suitable for students and researchers in the fields of sol-gel or colloidal chemistry and interested in the topics of self-assembly and mesoporous phases.
THE CURRENT STATE OF THE ART of waterborne polymers, paints, coatings, inks and printing processes is presented in this volume. This is the third volume in the series on waterborne coating and printing technology. It documents several invited papers and the proceedings of the International Symposium on Surface Phenomena and Latexes in Waterborne Coatings and printing Technology sponsored by the Fine Particle Society (FPS). The FPS meeting was held in Las Vegas, Nevada, July 13-17, 1992. The volume deals with various basic and applied aspects of research on waterborne coating printing technology. Major topics discussed involve waterborne polymers and polymer blends, pigment grinding, millbases, paint formulation, and characterization of coating films. This edition includes sixteen selected papers related to recent developments in waterborne technology. These papers are divided in three broad categories: (1) Waterborne Polymers and pigment Dispersions, (2) Latex Film, Wetting Phenomena and Printing Gloss, (3) Surfactants and Polymers in Aqueous Coating printing Systems. This volume includes discussions of various waterborne polymers in coating printing systems. The editors hope that this volume will serve its intended objective of reflecting the current understanding of formulation and process problems related to waterborne coatings, paints and inks. In addition, it will be a valuable reference source for both novices as well as experts in the field of waterborne technology. It will also help the readers to understand underlying surface phenomena and will enhance the reader's potential for solving critical formulation, evaluation and process problems.
This thesis considers molecular orientation in thin films and introduces an optical model describing this orientation as applied to organic light-emitting diodes (OLEDs). It also describes the electronic structure of intermolecular charge transfer excitons correlated to molecular orientation in solids. It has long been known that molecular orientation influences the electrical and optical properties of molecular films. One notable example is in liquid crystals where rigid rod or disk shaped molecules are commonly used. Understanding the origin of the molecular orientation and its control by surface treatment and electric field resulted in the development of liquid crystal displays. The same thing has happened in organic electronics, and considerable effort has been devoted to understanding and controlling molecular orientation in solid films to improve charge carrier mobility and light absorption, ultimately to improve the performance of organic solar cells and thin film transistors. In contrast, less attention has been paid to molecular orientation and its influence on the characteristics of OLEDs, probably because of the use of amorphous films rather than micro-crystalline films, and it is only in recent years that some molecular films are known to have preferred orientation. This thesis addresses this topic, focusing on OLEDs, describing the origin and control of the orientation of phosphorescent Ir complexes possessing spherical shape rather than rod or disk shape, the simulation of the optical characteristics of OLEDs influenced by preferred molecular orientation, and finally the orientation of intermolecular charge transfer excitons and its correlation to electronic structures in thin films.
A detailed treatment of information relating to fluid-oxide interfaces. It outlines methods for quantifying adsorption and desorption of polymeric and non-polymeric solutes at the gas- and solution-oxide interfaces. It also analyzes novel properties of oxide membranes and the synthesis and dissolution of oxide solids.
The study of capillarity is in the midst of a veritable explosion. Hence the temptation to write a new book, aiming at an audience of students. What is offered here is not a comprehensive review of the latest research but rather a compendium of principles. How does one turn a hydrophilic surface into one that is hydrophobic, and vice versa? We will describe a few solutions. Some rely on chemical treatments, such as coating a surface with a molecular layer. Others are based on physics, for instance by controlling the roughness of a surface. We will also examine the dynamics of wetting. Drops that spread spontaneously do so at a rate that slows down with time. They can be tricked into covering large areas by spreading them suddenly. We will describe a few of the many facets of their dynamical properties. Special additives are required for water to foam. Foams are desirable in a shampoo but can be a nightmare in a dishwasher detergent. Antifoam agents have been developed and are well known, but how do they work? It is also possible to generate bubbles and foams without special additives, for example in pure and viscous liquids such as glycerin, molten glass, and polymers. As we will see, the laws of draining and bursting then turn out to be quite different from the conventional ones. This book will enable the reader to understand in simple terms such questions that affect every day life -- questions that also come up during in industry. The aim is to view systems that often prove quite complex in a way that isolates a particular physical phenomenon, often avoiding descriptions requiring advanced numerical techniques will oftentimes in favor of qualitative arguments. This strategy may at times jeopardize scientific rigor, but it makes it possible to grasp things efficiently and to invent novel situations.
Unique in focus, Surface Chemistry and Geochemistry of Hydraulic Fracturing examines the surface chemistry and phenomena in the hydrofracking process. Under great scrutiny as of late, the physico-chemical properties of hydrofracking are fully detailed and explained. Topics include the adsorption-desorption of gas on the shale reservoir surface and relevant waste-water treatment dependent on various surface chemistry principles. The aim of this book is to help engineers and research scientists recognize the basic surface chemistry principles related to this subject. Written by a long-time expert in the field, this book presents an unbiased account of the hard science and engineering involved in a resource that is gaining growing attention within the community.
Semiconductor Surfaces and Interfaces deals with structural and electronic properties of semiconductor surfaces and interfaces. The first part introduces the general aspects of space-charge layers, of clean-surface and adatom-induced surfaces states, and of interface states. It is followed by a presentation of experimental results on clean and adatom-covered surfaces which are explained in terms of simple physical and chemical concepts. Where available, results of more refined calculations are considered. This third edition has been thoroughly revised and updated. In particular it now includes an extensive discussion of the band lineup at semiconductor interfaces. The unifying concept is the continuum of interface-induced gap states.
In this book, the author determines that a surface is itself a new material for chemical reaction, and the reaction of the surface provides additional new materials on that surface. The revelation of that peculiarity is what makes this book different from an ordinary textbook, and this new point of view will help to provide a new impetus when graduate students and researchers consider their results. The reaction of surface atoms provides additional new compounds, but these compounds cannot be detached from the surface. Some compounds are passive, but others work as catalysts. One superior feature of the surface is the dynamic cooperation of two or more different functional materials or sites on the same surface. This fact has been well established in the preferential oxidation of CO on platinum supported on a carbon nanotube with Ni-MgO at its terminal end. The Pt and Ni-MgO are perfectly separated, but these two are indispensable for the selective oxidation of CO in H2, where the H2O molecule plays a key role. The reader will understand that the complexity of catalysis is due to the complexity of the dynamic processes on the surface.
The author integrates discussions of fractal geometry, surface modeling techniques, and applications to real world problems to provide a comprehensive, accessible overview of the field. His work will equip researchers with the basic tools for measurement and interpretation of data, stimulating more work on these problems and, perhaps, leading to an understanding of the reasons that Nature has adopted this geometry to shape much of our world.
Containing more than 2600 references and over 550 equations, drawings, tables, photographs, and micrographs, This book describes hierarchical assemblies in biology and biological processes that occur at the nanoscale across membranes and at interfaces. It covers recurrent themes in nanocolloid science, including self-assembly, construction of supramolecular architecture, nanoconfinement and compartmentalization, measurement and control of interfacial forces, novel synthetic materials, and computer simulation. The authors reviews surface forces apparatus measurements of two-dimensional organized ensembles at solid-liquid interfaces.
This volume is based on lectures given at the NATO-Advanced Study Institute on Structure and Dynamics of Polymer and Colloid Systems held in Les Houches, France from September 14-24, 1999. The meeting arose from a perceived need to bring together scientists studying the polymer and colloid fields. Although these fields are intertwined and share many techniques (e. g. , light, neutron and x-ray scattering), it is remarkable how little the approaches and concepts used by the one field penetrate the other. For instance, the theory of spherical colloids is very highly developed and many of the concepts developed for these systems can be extended to those with non-spherical morphology, such as solutions of rigid rod polymers. In addition, mixtures of polymers and colloids, both in the bulk and at interfaces, are the basis for many industrial products. Methods are now rapidly being developed for understanding the structure and dynamics in polymer/colloid mixtures at the molecular level, but the point of view of the colloid scientist is often rather different from that of the polymer scientist. The NATO-ASI brought together polymer and colloid scientists, including many young researchers, who presented and discussed recent developments in these fields and the possibilities for cross-fertilization This volume contains articles on a wide variety of topics at the research forefront of the polymer and colloid fields by some of the world's foremost experts at a level accessible to graduate students, post-docs and researchers.
This book presents the survismeter, a new invention that widely covers and determines PCPs of various molecules and experimentally measures the thermodynamic and kinetic stabilities of nanoemulsions. It unveils how a survismeter can measure surface tension, interfacial tension, wettability, viscosity, friccohesity, tentropy, rheology, density, activation energy, and particle size. It discusses novel models of molecular science that can be applied in the formulation and study of activities of functional molecules through their PCPs. It also introduces the new concept of friccohesity, which has emerged as an excellent substitute of viscosity and surface tension in experimental measurements as it does not require density measurements. It shows that the science and technology of the survismeter and friccohesity have become an inevitable part of scientific research, substantially integrating the domain of perfect industrial and academic formulations.
Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a detailed and systematic analysis of the properties of ions at the air/water interface. Unifying older and newer theories and measurements, this book emphasizes the contributions of simple ions to surface tension behavior, and the practical consequences. It begins with a general discussion on Gibbs surface thermodynamics, offering a guide to his theoretical insight and formulation of the boundary between fluids. The text then discusses the thermodynamic formulae that are useful for practical experimental work in the analysis of fluid/fluid interfaces. Chapters cover surface tension of pure water at air/water and air/oil interfaces, surface tension of solutions and the thermodynamic quantities associated with the adsorption and desorption of solutes, and surface tension of simple salt solutions. They also address adsorption of ions at the air/water interface, surface tension of solutions and the effect of temperature, adsorption from mixed electrolyte solutions, and thermodynamic properties of zwitterionic amino acids in the surface region. Focusing on the thermodynamic properties of ions at air/fluid interfaces, this book gives scientists a quantitative, rigorous, and objectively experimental methodology they can employ in their research.
Self-Assembly Processes at Interfaces: Multiscale Phenomena provides the conceptual and unifying view of adsorption, self-assembly, and grafting processes at solid-liquid and liquid-gas interfaces, also describing experimental methods where applicable. An invaluable resource for (post)-graduate students looking to bridge the gap between acquiring the field's existing knowledge and the creation of new insights, the book recalls fundamental concepts, giving rigorous, but first-principle-based, calculations and exercises, and showing how these concepts have been used in recent research articles. Readers will find guidelines on how best to start research in the field of surface chemistry with biological macromolecules and molecules able to undergo self-assembly process at interfaces in the presence of a liquid, along with discussions on the very fundamental aspects and applications using concepts of biomimetic chemistry. By highlighting the interdisciplinary aspects of the field of self-assembly at interfaces, the book is an ideal resource for chemical engineers, chemists, physicists, and biologists. In addition, important equations are demonstrated on the basis of fundamental concepts, and overly complex mathematical developments are avoided.
Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS.* Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art* Offers interpretations of SEVS spectra for practicing analysts* Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst
Self-assembly monolayer (SAM) structures of lipids and macromolecules have been found to play an important role in many industrial and biological phenomena. This book describes two procedures, namely the STM and AFM, that are used to study SAMs at solid surfaces. K.S. Birdi examines the SAMs at both liquid and solid surfaces by using the Langmuir monolayer method. This book is intended for researchers, academics and professionals.
The most important aspects of modern surface science are covered. All topics are presented in a concise and clear form accessible to a beginner. At the same time, the coverage is comprehensive and at a high technical level, with emphasis on the fundamental physical principles. Numerous examples, references, practice exercises, and problems complement this remarkably complete treatment, which will also serve as an excellent reference for researchers and practitioners. The textbook is idea for students in engineering and physical sciences.
Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry with up-to-date references and data from real-world examples. This book enables readers to better understand many natural phenomena and industrial processes. Mathematical treatment is mainly given as references to make the material accessible to individuals with a broader range of scientific backgrounds. The book begins by introducing basic considerations with respect to liquid and solid surfaces and describes forces in curved versus flat liquid surfaces. Chapters cover properties of surface active substances, such as surfactants and soaps; lipid films and Langmuir-Blodgett films; and adsorption and desorption on solid surfaces. The author discusses processes involved in liquid-solid interface phenomena, which are utilized in washing, coatings, lubrication, and more, and colloid chemistry systems and related industrial applications such as wastewater treatment. The author also addresses bubbles, films, and foams and the principles of oil-water emulsion science, used in detergents, paints, and skin creams. The final chapter considers more complex applications, for example, food emulsions, scanning probe miscroscopy, the cement industry, and gas and oil recovery.
Colloid and surface science is a fascinating interdisciplinary field, where modern development and knowledge of physics, chemistry, biology, material science, pharmacy and engineering have been extensively adopted, with ample scope for fundamental research and extensive potential for application. The progress of research in this important field has been remarkable during the last four decades, and it has greatly benefited society. With a summary of recent advances in this multifaceted field, Recent Trends in Surface and Colloid Science provides critical information and presents the basic concepts of organized systems in relation to their practical significance. |
You may like...
Power vs Force - The Hidden Determinants…
David R. Hawkins
Paperback
(3)
|