Books > Medicine > Clinical & internal medicine > Renal medicine
|
Buy Now
Neural Control of Renal Function (Hardcover, 2nd Revised edition)
Loot Price: R1,901
Discovery Miles 19 010
|
|
Neural Control of Renal Function (Hardcover, 2nd Revised edition)
Series: Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease
Expected to ship within 10 - 15 working days
|
The kidney is innervated with efferent sympathetic nerve fibers
reaching the renal vasculature, the tubules, the juxtaglomerular
granular cells, and the renal pelvic wall. The renal sensory nerves
are mainly found in the renal pelvic wall. Increases in efferent
renal sympathetic nerve activity reduce renal blood flow and
urinary sodium excretion by activation of 1-adrenoceptors and
increase renin secretion rate by activation of 1-adrenoceptors. In
response to normal physiological stimulation, changes in efferent
renal sympathetic nerve activity contribute importantly to
homeostatic regulation of sodium and water balance. The renal
mechanosensory nerves are activated by stretch of the renal pelvic
tissue produced by increases in renal pelvic tissue of a magnitude
that may occur during increased urine flow rate. Under normal
conditions, the renal mechanosensory nerves activated by stretch of
the sensory nerves elicits an inhibitory renorenal reflex response
consisting of decreases in efferent renal sympathetic nerve
activity leading to natriuresis. Increasing efferent sympathetic
nerve activity increases afferent renal nerve activity which, in
turn, decreases efferent renal sympathetic nerve activity by
activation of the renorenal reflexes. Thus, activation of the
afferent renal nerves buffers changes in efferent renal sympathetic
nerve activity in the overall goal of maintaining sodium balance.
In pathological conditions of sodium retention, impairment of the
inhibitory renorenal reflexes contributes to an inappropriately
increased efferent renal sympathetic nerve activity in the presence
of sodium retention. In states of renal disease or injury, there is
a shift from inhibitory to excitatory reflexes originating in the
kidney. Studies in essential hypertensive patients have shown that
renal denervation results in long-term reduction in arterial
pressure, suggesting an important role for the efferent and
afferent renal nerves in hypertension.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!
|
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.