Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 23 of 23 matches in All Departments
This book is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. The papers cover the full range of robotic systems, including serial, parallel and cable-driven manipulators. The systems range from being less than fully mobile, to kinematically redundant, to over-constrained. The book brings together 43 peer-reviewed papers. They report on the latest scientific and applied achievements. The main theme that connects them is the movement of robots in the most diverse areas of application.
This book is the volume of the proceedings for the 17th Edition of ISER. The goal of ISER (International Symposium on Experimental Robotics) symposia is to provide a single-track forum on the current developments and new directions of experimental robotics. The series has traditionally attracted a wide readership of researchers and practitioners interested to the advances and innovations of robotics technology. The 54 contributions cover a wide range of topics in robotics and are organized in 9 chapters: aerial robots, design and prototyping, field robotics, human-robot interaction, machine learning, mapping and localization, multi-robots, perception, planning and control. Experimental validation of algorithms, concepts, or techniques is the common thread running through this large research collection. Chapter "A New Conversion Method to Evaluate the Hazard Potential of Collaborative Robots in Free Collisions" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This monograph presents an updated source of information on the state of the art in advanced control of articulated and mobile robots. It includes relevant selected problems dealing with enhanced actuation, motion planning and control functions for articulated robots, as well as of sensory and autonomous decision capabilities for mobile robots. The basic idea behind the book is to provide a larger community of robotic researchers and developers with a reliable source of information and innovative applications in the field of control of cooperating and mobile robots. This book is the outcome of the research project MISTRAL (Methodologies and Integration of Subsystems and Technologies for Anthropic Robotics and Locomotion) funded in 2001-2002 by the Italian Ministry for Education, University and Research. The thorough discussion, rigorous treatment, and wide span of the presented work reveal the significant advances in the theoretical foundation and technology basis of the robotics field worldwide.
Dexterous and autonomous manipulation is a key technology for the personal and service robots of the future. Advances in Bimanual Manipulation edited by Bruno Siciliano provides the robotics community with the most noticeable results of the four-year European project DEXMART (DEXterous and autonomous dual-arm hand robotic manipulation with sMART sensory-motor skills: A bridge from natural to artificial cognition). The volume covers a host of highly important topics in the field, concerned with modelling and learning of human manipulation skills, algorithms for task planning, human-robot interaction, and grasping, as well as hardware design of dexterous anthropomorphic hands. The results described in this five-chapter collection are believed to pave the way towards the development of robotic systems endowed with dexterous and human-aware dual-arm/hand manipulation skills for objects, operating with a high degree of autonomy in unstructured real-world environments.
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.
This book collects the main results of the Advanced Grant project RoDyMan funded by the European Research Council. As a final demonstrator of the project, a pizza-maker robot was realized. This represents a perfect example of understanding the robot challenge, considering every inexperienced person's difficulty preparing a pizza. Through RoDyMan, the opportunity was to merge all the acquired competencies in advancing the state of the art in nonprehensile dynamic manipulation, which is the most complex manipulation task, considering deformable objects. This volume is intended to present Ph.D. students and postgraduates working on deformable object perception and robot manipulation control the results achieved within RoDyMan and propose cause for reflection of future developments. The RoDyMan project culminating with this book is meant as a tribute to Naples, the hosting city of the project, an avant-garde city in robotics technology, automation, gastronomy, and art culture.
This book is a collection of papers on the state of the art in experimental robotics. Experimental Robotics is at the core of validating robotics research for both its systems science and theoretical foundations. Because robotics experiments are carried out on physical, complex machines, of which its controllers are subject to uncertainty, devising meaningful experiments and collecting statistically significant results, pose important and unique challenges in robotics. Robotics experiments serve as a unifying theme for robotics system science and algorithmic foundations. These observations have led to the creation of the International Symposia on Experimental Robotics. The papers in this book were presented at the 2002 International Symposium on Experimental Robotics.
The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization's Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook's team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/
This book is the volume of the proceedings for the 17th Edition of ISER. The goal of ISER (International Symposium on Experimental Robotics) symposia is to provide a single-track forum on the current developments and new directions of experimental robotics. The series has traditionally attracted a wide readership of researchers and practitioners interested to the advances and innovations of robotics technology. The 54 contributions cover a wide range of topics in robotics and are organized in 9 chapters: aerial robots, design and prototyping, field robotics, human-robot interaction, machine learning, mapping and localization, multi-robots, perception, planning and control. Experimental validation of algorithms, concepts, or techniques is the common thread running through this large research collection. Chapter "A New Conversion Method to Evaluate the Hazard Potential of Collaborative Robots in Free Collisions" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
With a specific focus on the needs of the designers and engineers in industrial settings, The Mechanical Systems Design Handbook: Modeling, Measurement, and Control presents a practical overview of basic issues associated with design and control of mechanical systems. In four sections, each edited by a renowned expert, this book answers diverse questions fundamental to the successful design and implementation of mechanical systems in a variety of applications.
This book is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. The papers cover the full range of robotic systems, including serial, parallel and cable-driven manipulators. The systems range from being less than fully mobile, to kinematically redundant, to over-constrained. The book brings together 43 peer-reviewed papers. They report on the latest scientific and applied achievements. The main theme that connects them is the movement of robots in the most diverse areas of application.
Aerial robotic manipulation integrates concepts and technologies coming from unmanned aerial systems and robotics manipulation. It includes not only kinematic, dynamics, aerodynamics and control but also perception, planning, design aspects, mechatronics and cooperation between several aerial robotics manipulators. All these topics are considered in this book in which the main research and development approaches in aerial robotic manipulation are presented, including the description of relevant systems. In addition of the research aspects, the book also includes the deployment of real systems both indoors and outdoors, which is a relevant characteristic of the book because most results of aerial robotic manipulation have been validated only indoor using motion tracking systems. Moreover, the book presents two relevant applications: structure assembly and inspection and maintenance, which has started to be applied in the industry. The Chapters of the book will present results of two main European Robotics Projects in aerial robotics manipulation: FP7 ARCAS and H2020 AEROARMS. FP7 ARCAS defined the basic concepts on aerial robotic manipulation, including cooperative manipulation. The H2020 AEROARMS on aerial robot with multiple arms and advanced manipulation capabilities for inspection and maintenance has two general objectives: (1) development of advanced aerial robotic manipulation methods and technologies, including manipulation with dual arms and multi-directional thrusters aerial platforms; and (2) application to the inspection and maintenance.
Dexterous and autonomous manipulation is a key technology for the personal and service robots of the future. Advances in Bimanual Manipulation edited by Bruno Siciliano provides the robotics community with the most noticeable results of the four-year European project DEXMART (DEXterous and autonomous dual-arm hand robotic manipulation with sMART sensory-motor skills: A bridge from natural to artificial cognition). The volume covers a host of highly important topics in the field, concerned with modelling and learning of human manipulation skills, algorithms for task planning, human-robot interaction, and grasping, as well as hardware design of dexterous anthropomorphic hands. The results described in this five-chapter collection are believed to pave the way towards the development of robotic systems endowed with dexterous and human-aware dual-arm/hand manipulation skills for objects, operating with a high degree of autonomy in unstructured real-world environments.
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.
Aerial robotic manipulation integrates concepts and technologies coming from unmanned aerial systems and robotics manipulation. It includes not only kinematic, dynamics, aerodynamics and control but also perception, planning, design aspects, mechatronics and cooperation between several aerial robotics manipulators. All these topics are considered in this book in which the main research and development approaches in aerial robotic manipulation are presented, including the description of relevant systems. In addition of the research aspects, the book also includes the deployment of real systems both indoors and outdoors, which is a relevant characteristic of the book because most results of aerial robotic manipulation have been validated only indoor using motion tracking systems. Moreover, the book presents two relevant applications: structure assembly and inspection and maintenance, which has started to be applied in the industry. The Chapters of the book will present results of two main European Robotics Projects in aerial robotics manipulation: FP7 ARCAS and H2020 AEROARMS. FP7 ARCAS defined the basic concepts on aerial robotic manipulation, including cooperative manipulation. The H2020 AEROARMS on aerial robot with multiple arms and advanced manipulation capabilities for inspection and maintenance has two general objectives: (1) development of advanced aerial robotic manipulation methods and technologies, including manipulation with dual arms and multi-directional thrusters aerial platforms; and (2) application to the inspection and maintenance.
A study of the latest research results in the theory of robot control, structured so as to echo the gradual development of robot control over the last fifteen years. In three major parts, the editors deal with the modelling and control of rigid and flexible robot manipulators and mobile robots. Most of the results on rigid robot manipulators in part I are now well established, while for flexible manipulators in part II, some problems still remain unresolved. Part III deals with the control of mobile robots, a challenging area for future research. The whole is rounded off with an appendix reviewing basic definitions and the mathematical background for control theory. The particular combination of topics makes this an invaluable source of information for both graduate students and researchers.
Atthedawnofthenewmillennium, roboticsisundergoingamajortransformation inscopeanddimension.Fromalargelydominantindustrialfocus, roboticsisrapidly expanding into the challenges of unstructured environments. Interacting with, - sisting, serving, and exploring with humans, the emerging robots will increasingly touchpeopleandtheirlives. ThegoalofthenewseriesofSpringerTractsinAdvancedRobotics(STAR)isto bring, in a timely fashion, the latest advances and developments in robotics on the basisoftheirsigni?canceandquality.Itisourhopethatthewiderdisseminationof researchdevelopmentswillstimulatemoreexchangesandcollaborationsamongthe researchcommunityandcontributetofurtheradvancementofthisrapidlygrowing ?eld. Sinceitsinceptionsomefourteenyearsago, ISER, theInternationalSymposium on Experimental Robotics was published in the Springer Lecture Notes in Control and Information Sciences (LNCIS). With the launching of STAR, a more suitable homeisfoundforthisandotherthematicsymposiadevotedtoexcellenceinrobotics research. TheEightheditionofExperimentalRoboticseditedbyBrunoSicilianoandPaolo Dario offers in its ?fteen-chapter volume a collection of a broad range of topics in robotics.Thecontentsofthesecontributionsrepresentacross-sectionofthecurrent stateofroboticsresearchfromoneparticularaspect: experimentalwork, andhowit re?ectsonthetheoreticalbasisofsubsequentdevelopments.Experimentalvalidation ofalgorithms, designconcepts, ortechniquesisthecommonthreadrunningthrough thislargecollectionofwidelydiversecontributions. From its charming venue to its excellent program, ISER culminates with this unique reference on the current developments and new directions in the ?eld of experimentalrobotics-atributetothecommitmentanddedicationofitshosts California, USA OussamaKhatib November2002 STAREditor Preface The International Symposium on Experimental Robotics (ISER) is a series of - annual meetings, which are organized in a rotating fashion around North Am- ica, EuropeandAsia/Oceania.PreviousvenueswereMontreal(Canada), Toulouse (France), Kyoto (Japan), Stanford (USA), Barcelona (Spain), Sydney (Australia), Honolulu (USA). The goal of these symposia is to provide a forum for research in robotics that focuses on theories and principles that are validated by experiments. Themeetingsareconceivedtobringtogether, inasmallgroupsetting, researchers fromaroundtheworldwhoareintheforefrontofexperimentalroboticsresearch. Thepost-symposiumExperimentalRoboticsproceedingshavetraditionallybeen published by Springer-Verlag. In addition to the proceedings, these symposia have produced compilation of video segments illustrating the reported research, which areavailableasvideoproceedings. The Eight International Symposium on Experimental Robotics (ISER 02) was held in the charming sea village of Sant'Angelo on the island of Ischia in the gulf ofNaples, Italyon8-11July2002.ThesymposiumwaschairedbyBrunoSiciliano andPaol
This monograph presents an updated source of information on the state of the art in advanced control of articulated and mobile robots. It includes relevant selected problems dealing with enhanced actuation, motion planning and control functions for articulated robots, as well as of sensory and autonomous decision capabilities for mobile robots. The basic idea behind the book is to provide a larger community of robotic researchers and developers with a reliable source of information and innovative applications in the field of control of cooperating and mobile robots. This book is the outcome of the research project MISTRAL (Methodologies and Integration of Subsystems and Technologies for Anthropic Robotics and Locomotion) funded in 2001-2002 by the Italian Ministry for Education, University and Research. The thorough discussion, rigorous treatment, and wide span of the presented work reveal the significant advances in the theoretical foundation and technology basis of the robotics field worldwide.
The classic text on robot manipulators now covers visual control, motion planning and mobile robots too! Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB (R) code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.
Robotics applications, initially developed for industrial and manufacturing contexts, are now strongly present in several elds. Besides well-known space and high-technology applications, robotics for every day life and medical s- vices is becoming more and more popular. As an example, robotic manipu- tors are particularly useful in surgery and radiation treatments, they could be employed for civil demining, for helping disabled people, and ultimately for domestic tasks, entertainment and education. Such a kind of robotic app- cations require the integration of many di erent skills. Autonomous vehicles and mobile robots in general must be integrated with articulated manipu- tors. Many robotic technologies (sensors, actuators and computing systems) must be properly used with speci c technologies (localisation, planning and control technologies). The task of designing robots for these applications is a hard challenge: a speci c competence in each area is demanded, in the e ort of a truly integrated multidisciplinary design.
Focusing on the important control problems in state-of-the-art robotics and automation, this volume features invited papers from a workshop held at CDC, San Diego, California. As well as looking at current problems, it aims to identify and discuss challenging issues that are yet to be solved but which will be vital to future research directions. The many topics covered include: automatic control, distributed multi-agent control, multirobots, dexterous hands, flexible manipulators, walking robots, free-floating systems, nonholonomic robots, sensor fusion, fuzzy control, virtual reality, visual servoing, and task synchronization. Control Problems in Robotics and Automation will be of interest to all researchers, scientists and graduate students who wish to broaden their knowledge in robotics and automation and prepare themselves to address and resolve the control problems that will be faced in this field as we enter the twenty-first century.
In-depth coverage of control both of manipulators and mobile robots sets this apart from other robotics textbooks Worked examples and MATLABr-based simulations developed throughout the text Expands and updates an already-popular text with material that will make it even more attractive for use in all kinds of graduate robotics courses Electronic solutions manual to be supplied free of charge to academics adopting this text for courses The classic text on robot manipulators now covers visual control, motion planning and mobile robots too Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. The text develops around a core of consistent and rigorous formalism with fundamental and technological material giving rise naturally and with gradually increasing difficulty to more advanced considerations. The theory of manipulator structures presented in the early part of the book encompasses: the fundamentals: kinematics, statics and trajectory planning; and the technology of actuators, sensors and control units. Subsequently, more advanced instruction is given in: dynamics and motion control of robot manipulators; environmental interaction using exteroceptive sensory data (force and vision); mobile robots; and motion planning. Appendices ensure that students will have access to a consistent level of background in basic areas such as rigid-body mechanics, feedback control, and others. Problems are raised and the proper tools established to find engineering-oriented solutions rather than to focus on abstruse theoretical methodology. To impart practical skill, more than 60 examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, nearly 150 end-of-chapter problems are proposed, and the book is accompanied by a pdf solutions manual containing the MATLABr code for computer problems; this is available free of
|
You may like...
Database Principles - Fundamentals of…
Carlos Coronel, Keeley Crockett, …
Paperback
Projection-Based Clustering Through…
Michael Christoph Thrun
Hardcover
R1,407
Discovery Miles 14 070
Discovering Computers, Essentials…
Susan Sebok, Jennifer Campbell, …
Paperback
Cyber-Physical Systems of Systems…
Andrea Bondavalli, Sara Bouchenak, …
Hardcover
R1,497
Discovery Miles 14 970
Advanced Technologies in Hydropower Flow…
Adam Adamkowski, Anton Bergant
Hardcover
R1,173
Discovery Miles 11 730
|