Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Other technologies > Space science > Astronautics
This book presents the best contributions of the the Third International Symposium on Solar Sailing Glasgow, 11 - 13 June 2013. It is a rapid snap-shot of the state-of-the art of solar sail technology in 2013 across the globe, capturing flight programs, technology development programs and new technology and application concepts. The book contains contributions from all of the leading figures in the field, including NASA, JAXA, ESA & DLR as well as university and industry experts. It therefore provides a unique reference point for the solar sail technology. The book also includes key contributions from the prospective users of solar sail technology, which will allow the technology to be considered by the user in this unique context.
This book provides a showcase for the incredibly well-preserved flight-textured tektites of southern Australia, which are the world's finest known examples. It provides an overview of their forms and flight features, which can be expected to appear, at least in part, on any objects falling from space. Some of these specimens are so perfectly shaped that it is hard to believe that they have been buried in the recent strata of Australia for 770,000 years. It also discusses the history of the story of their incredible flight into space and return becoming widely accepted, which led to them being recognized as space travelers. Further, it describes their classical shapes and offers an explanation of how each developed. It provides collectors, meteoriticists, and museum curators with insights into the astounding forms of Australian tektites produced by hypersonic flight.
This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50's through to the 70's on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey's open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 when Dungey's epoch-making paper was published. Further contributions on current Earth magnetosphere research and space plasma physics included in this book show how Dungey's basic ideas have remained explanative 50 years on. But the Festspiel also introduced some advances that possibly Dungey had not foreseen. One of the contributions presented in this book is on the variety of magnetospheres of the solar system which have been seen directly during the space age, discussing the variations in spatial scale and reconnection time scale and comparing them in respect of Earth, Mercury, the giant planets as well as Ganymede.
This work presents a study of methods useful for modeling and understanding dynamical systems in the Galaxy. A natural coordinate system for the study of dynamical systems is the angle-action coordinate system. New methods for the approximation of the action-angle variables in general potentials are presented and discussed. These new tools are applied to the construction of dynamical models for two of the Galaxy’s components: tidal streams and the Galactic disc. Tidal streams are remnants of tidally stripped satellites in the Milky Way that experience the effects of the large scale structure of the Galactic gravitational potential, while the Galactic disc provides insights into the nature of the Galaxy near the Sun. Appropriate action-based models are presented and discussed for these components, and extended to include further information such as the metallicity of stars.
This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.
This book provides a general introduction to the rapidly developing astrophysical frontier of stellar tidal disruption, but also details original thesis research on the subject. This work has shown that recoiling black holes can disrupt stars far outside a galactic nucleus, errors in the traditional literature have strongly overestimated the maximum luminosity of “deeply plunging” tidal disruptions, the precession of transient accretion disks can encode the spins of supermassive black holes, and much more. This work is based on but differs from the original thesis that was formally defended at Harvard, which received both the Roger Doxsey Award and the Chambliss Astronomy Achievement Student Award from the American Astronomical Society.
Describes the instruments and initial results of the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory. This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS), one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope. These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations. This volume is aimed at graduate students and researchers working in the field of solar physics and space sciences. Originally published in Solar Physics, Vol. 288, Issue 1, 2013, and Vol. 289, Issue 11, 2014.
A new and detailed picture of Mercury is emerging thanks to NASA's MESSENGER mission that spent four years in orbit about the Sun's innermost planet. Comprehensively illustrated by close-up images and other data, the author describes Mercury's landscapes from a geological perspective: from sublimation hollows, to volcanic vents, to lava plains, to giant thrust faults. He considers what its giant core, internal structure and weird composition have to tell us about the formation and evolution of a planet so close to the Sun. This is of special significance in view of the discovery of so many exoplanets in similarly close orbits about their stars. Mercury generates its own magnetic field, like the Earth (but unlike Venus, Mars and the Moon), and the interplay between Mercury's and the Sun's magnetic field affects many processes on its surface and in the rich and diverse exosphere of neutral and charged particles surrounding the planet. There is much about Mercury that we still don't understand. Accessible to the amateur, but also a handy state-of-the-art digest for students and researchers, the book shows how our knowledge of Mercury developed over the past century of ground-based, fly-by and orbital observations, and looks ahead at the mysteries remaining for future missions to explore.
This thesis describes the essential features of Moon-plasma interactions with a particular emphasis on the Earth's magnetotail plasma regime from both observational and theoretical standpoints. The Moon lacks a dense atmosphere as well as a strong intrinsic magnetic field. As a result, its interactions with the ambient plasma are drastically different from solar-wind interactions with magnetized planets such as Earth. The Moon encounters a wide range of plasma regime from the relatively dense, cold, supersonic solar-wind plasma to the low-density, hot, subsonic plasma in the geomagnetic tail. In this book, the author presents a series of new observations from recent lunar missions (i.e., Kaguya, ARTEMIS, and Chandrayaan-1), demonstrating the importance of the electron gyro-scale dynamics, plasma of lunar origin, and hot plasma interactions with lunar magnetic anomalies. The similarity and difference between the Moon-plasma interactions in the geomagnetic tail and those in the solar wind are discussed throughout the thesis. The basic knowledge presented in this book can be applied to plasma interactions with airless bodies throughout the solar system and beyond.
The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).
This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the application of this methodology has yielded the observed anomalous acceleration. This marks a major achievement, given that this problem remained unsolved for more than a decade. For the second anomaly, the flyby anomaly, a tiny glitch in the velocity of spacecraft that perform gravity assisting maneuvers on Earth, no definitive answer is put forward; however a quite promising strategy for examining the problem is provided and a new mission is proposed. The proposal largely consists in using the Galileo Navigational Satellite System to track approaching spacecraft, and in considering a small test body that approaches Earth from a highly elliptic trajectory.
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvenic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom's law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
With contributions from leading scientists in the field, and edited by two of the most prominent astronomers of our time, this is a totally authoritative volume on X-ray astronomy that will be essential reading for everyone interested - from students to astrophysicists and physicists. All the aspects of this exciting area of study are covered, from astronomical instrumentation to extragalactic X-ray astronomy.
In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet upper atmosphere and environment observations, exoplanet and stellar magnetospheres, and exoplanet observation and characterization. The book closes with an outlook on the future of this research field.
Stars are Small Dark-Coloured Things That Live in Holes in the Ground.- Shrouds of the Night - Galaxies and Rene Magritte.- Twin Masks of Spiral Structure? A Local Perspective.- The Mask of Complexity in Disk Galaxies.- Cosmic Magnetic Fields - An Overview.- The Gaseous Halo Mask.- Molecular Gas Properties of Galaxies: The SMA CO(2-1) B0DEGA Legacy Project.- The DiVA's Mask: Iconifying Galaxies and Revealing HI Anomalies.- Enigmatic Masks of Cosmic Dust: Lessons from Nearby Galaxies Through the Eyes of the Spitzer Space Telescope.- The Large Magellanic Cloud: A Power Spectral Analysis of Spitzer Images.- Light Cores Behind Dark Masks.- Globalization, Open Access Publishing, and the Disappearance of Print: Threat or Opportunity?.- Super Star Clusters and Supernovae in Interacting LIRGs Unmasked by NIR Adaptive Optics.- Structure, Mass, and Stability of Galactic Disks.- What Can the Radial Surface Brightness Profiles of Galaxy Discs Tell Us About Their Evolution?.- The Complex Interplay of Dust and Star Light in Spiral Galaxy Discs.- Galaxy Morphology Revealed By SDSS: Blue Elliptical Galaxies.- Rings and Bars: Unmasking Secular Evolution of Galaxies.- Bars and Bulges Through Masks of Time.- Tidal Trails and Mass-Segregated Isothermal Clusters.- Stellar Debris Streams: New Probes of Galactic Structure and Formation.- Chemical Enrichment in Galaxies: Constraints on Nucleogenesis and Galaxy Evolution.- Chemodynamical Simulations of Galaxies.- Elemental Abundance Patterns of Disk Substructure.- Searching for Structures and Streams in the Extended Solar Neighbourhood with RAVE.- On the Age-Metallicity-Velocity Relation in the Nearby Disk Using the RAVE Survey.- The HERMES Project: Reconstructing Galaxy Formation.- Stellar Halos: Unmasking a Galaxy's History.- The Outer Halos of Elliptical Galaxies.- Galaxies: Lighthouses in the Shoals of Dark Halos.- Dark Haloes as Seen with Gravitational Lensing.- Behind the Mask: Resolving the Core-Cusp Problem in Spiral Galaxies.- A GALAXY BASELINE: Multiwavelength Study of a Sample of the Most Isolated Galaxies in the Local Universe.- Diffuse Light and Galaxy Interactions in the Core of Nearby Clusters.- Feedback in Star and Galaxy Formation.- When Bad Masks Turn Good.- Spitzer's View of Galaxies in the High-Redshift Universe.- Bandshifting and Other Masks of the Clumpy Populations in High-Redshift Galaxies.- Supernovae, Dust, and Cosmology.
This book is the result of a working group sponsored by ISSI in Bern, which was initially created to study possible ways to calibrate a Far Ultraviolet (FUV) instrument after launch. In most cases, ultraviolet instruments are well calibrated on the ground, but unfortunately, optics and detectors in the FUV are very sensitive to contaminants and it is very challenging to prevent contamination before and during the test and launch sequences of a space mission. Therefore, ground calibrations need to be confirmed after launch and it is necessary to keep track of the temporal evolution of the sensitivity of the instrument during the mission. The studies presented here cover various fields of FUV spectroscopy, including a catalog of stellar spectra, datasets of Moon Irradiance, observations of comets and measurements of the interplanetary background. Detailed modelling of the interplanetary background is presented as well. This work also includes comparisons of older datasets with current ones. This raises the question of the consistency of the existing datasets. Previous experiments have been calibrated independently and comparison of the datasets may lead to inconsistencies. The authors have tried to check that possibility in the datasets and when relevant suggest a correction factor for the corresponding data.
The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon's magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011.
James L. Burch*C. Philippe Escoubet Originally published in the journal Space Science Reviews, Volume 145, Nos 1-2, 1-2. DOI: 10. 1007/s11214-009-9532-7 (c) Springer Science+Business Media B. V. 2009 The IMAGE and CLUSTER spacecraft have revolutionized our understanding of the inner magnetosphere and in particular the plasmasphere. Before launch, the plasmasphere was not a prime objective of the CLUSTER mission. In fact, CLUSTER might not have ever observed this region because a few years before the CLUSTER launch (at the beginning of the 1990s), it was proposed to raise the perigee of the orbit to 8 Earth radii to make multipoint measu- ments in the current disruption region in the tail. Because of ground segment constraints, this proposal did not materialize. In view of the great depth and breadth of plasmaspheric research and numerous papers published on the plasmasphere since the CLUSTER launch, this choice certainly was a judicious one. The fact that the plasmasphere was one of the prime targets in the inner magnetosphere for IMAGE provided a unique opportunity to make great strides using the new and comp- mentary measurements of the two missions. IMAGE, with sensitive EUV cameras, could for the rst time make global images of the plasmasphere and show its great variability d- ing storm-time. CLUSTER, with four-spacecraft, could analyze in situ spatial and temporal structures at the plasmapause that are particularly important in such a dynamic system.
Based on extensive primary sources, many never previously translated into English, this is the definitive account of the origins of Ceres as it went from being classified as a new planet to reclassification as the first of a previously unknown group of celestial objects. Cunningham opens this critical moment of astronomical discovery to full modern analysis for the first time. This book includes all the voluminous correspondence, translated into English, between the astronomers of Europe about the startling discovery of Ceres by Piazzi in 1801. It covers the period up to March 1802, at which time Pallas was discovered. Also included are Piazzi's two monographs about Ceres, and the sections of two books dealing with Ceres, one by Johann Bode, the other by Johann Schroeter. The origin of the word 'asteroid' is explained, along with several chapters on the antecedents of the story going back to ancient Greek times. The formulation of Bode's Law is given, as are the details on the efforts of Baron von Zach to organize a search for the supposed missing planet between Mars and Jupiter. Examples of verse created to commemorate the great discovery are included in this first volume. The author, who has a PhD in the History of Astronomy, is a dedicated scholar of the story of asteroids and his research on the discovery of Ceres is comprehensive and fully sourced. The discovery came at a time when rival astronomers were in hot competition with each other, and when the true nature of these celestial bodies was not yet known. With astronomers in France, Italy and beyond vying to understand and receive credit for the new class of astral bodies, drama was not in short supply--nor were scientific advances.
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
The presentations at this NASA-hosted Symposium in honor of Mino Freund will touch upon the fields, to which his prolific mind has made significant contributions. These include low temperature physics, cosmology, and nanotechnology with its wide-ranging applicability to material science, neuroscience, Earth sciences and satellite technology. To learn more about Mino’s career you can download the "Tribute" http://multimedia.seti.org/mino/Tribute.pdf which outlines his journey from (i) low-temperature physics and superconductivity at the ETH Zürich to (ii) building one remarkable milliKelvin refrigerator for the US-Japan IRTS mission at UC Berkeley and ISAS in Japan to (iii) a decade in cosmology, to (iv) being on the micro-bolometer team at NASA Goddard for the HAWC instrument on SOFIA, to (v) developing at AFRL the nanotechnology portfolio for the entire Air Force. This was followed by six years at the NASA Ames Research Center, where Mino formulated his far-ahead ideas about swarms of capable nanosats circling the Earth, which have since started to become a reality. He engaged in a broad range of nanotechnology projects, including novel applications in neuroscience well before he himself was struck by the deadly brain tumor.
The word ''terraforming'' conjures up many exotic images and p- hapsevenwildemotions,butatitscoreitencapsulatestheideathat worldscanbechangedbydirecthumanaction.Theultimateaimof terraforming is to alter a hostile planetary environment into one that is Earth-like, and eventually upon the surface of the new and vibrant world that you or I could walk freely about and explore. It is not entirely clear that this high goal of terraforming can ever be achieved, however, and consequently throughout much of thisbooktheterraformingideasthatarediscussedwillapplytothe goal of making just some fraction of a world habitable. In other cases,theterraformingdescribedmightbeaimedatmakingaworld habitablenotforhumansbutforsomepotentialfoodsourcethat,of course, could be consumed by humans. The many icy moons that reside within the Solar System, for example, may never be ideal locationsforhumanhabitation,buttheypresentthegreatpotential for conversion into enormous hydroponic food-producing centers. The idea of transforming alien worlds has long been a literary backdrop for science fiction writers, and many a make-believe planet has succumbed to the actions of direct manipulation and the indomitable grinding of colossal machines. Indeed, there is something both liberating and humbling about the notion of tra- forming another world; it is the quintessential eucatastrophy espoused by J. R. R. Tolkien, the catastrophe that ultimately brings about a better world. When oxygen was first copiously produced by cyanobacterial activity on the Earth some three billion years ago, it was an act of extreme chemical pollution and a eucatastrophy. The original life-nurturing atmosphere was (eventually) changed f- ever, but an atmosphere that could support advanced life forms came about.
The purpose of this Gazetteer and Atlas of Astronomy (GAA) is to list, define and illustrate, for the first time, every named (as opposed to merely catalogued) object in the sky within a single reference work for use by the general reader, writers and editors dealing with astronomical themes, and those astronomers concerned with any aspect of astronomical nomenclature. Each part of the GAA will contain: * An introduction to the nomenclature of the body or group of bodies in question * A glossary of terminology used * A gazetteer listing in strict alphanumerical sequence essential information defining the body or feature concerned * An alphanumerically arranged classified index of all the headwords in the gazetteer * An atlas comprising maps and images with coordinate grids and labels identifying features listed in the gazetteer * Appendix material on the IAU nomenclature system and the transcription systems used for non-roman alphabets
In September 2011, the GRAIL mission launched two unmanned spacecraft to the Moon, which entered into lunar orbit on December 31, 2011 and January 1, 2012. They orbited the Moon until December 17, 2012, when they impacted the surface near the Moon's north pole. This book contains three review articles co-authored by the GRAIL Science Team and Guest Scientists that describe the reasons for the GRAIL mission, the development of the necessary technology, and the design of the mission to acquire the most precise measurements of the lunar gravity field possible today. The book provides a detailed description of the GRAIL mission's scientific objectives, the instrumentation and its required performance, the complex simulation of the measurement system for determining the gravity field, and the innovative education and public outreach of the mission directed toward middle-school students who could select areas of the Moon for imaging with the onboard MoonKam camera system. This volume is aimed at researchers and graduate students active in solar system science and planetology. Originally published in Space Science Reviews journal, Vol. 178/1, 2013. |
You may like...
X-ray Pulsar-based Navigation - Theory…
Wei Zheng, Yidi Wang
Hardcover
R2,802
Discovery Miles 28 020
Risk Assessment in Air Traffic…
Javier Alberto Perez Castan, Alvaro Rodriguez Sanz
Hardcover
Space Habitats and Habitability…
Sandra Hauplik-Meusburger, Sheryl Bishop
Hardcover
R4,265
Discovery Miles 42 650
|