Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Other technologies > Space science > Astronautics
Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and Attitude Determination Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation
This volume contains five articles describing the mission and its instruments. The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself. This is followed by a description of LADEE's Neutral Mass Spectrometer by Paul Mahaffy and company. This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet. In the following article Anthony Colaprete describes LADEE's Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface. Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon's surface. Mihaly Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust. This experiment was also very successful, but in this case their discovery was not the electrostatic levitation of dust, but that the dust was raised by meteoroid impacts. This is not what had been expected but clearly is the explanation that best fits the data. Originally published in Space Science Reviews, Volume 185, Issue 1-4, 2014.
New Horizons: Reconnaissance of the Pluto-Charon System and the Kuiper Belt C. T. Russell Originally published in the journal Space Science Reviews, Volume 140, Nos 1-4, 1-2. DOI: 10. 1007/s11214-008-9450-0 (c) Springer Science+Business Media B. V. 2008 Exploration is mankind's imperative. Since the beginnings of civilization, men and women have not been content to build a wall around their settlements and stay within its con nes. They explored the land around them, climbed the mountains, and scanned the horizons. The boldest among them pushed exploration to the most distant frontiers of the planet. As a result, much of the Earth was inhabited well before the days of the renowned European - th th plorers of the 15 and 16 centuries. Exploration did not cease, after the circumnavigation of the globe; it continued to the present. Today explorers are going in new directions, not just east and west, north and south. They explore backward in time and upward in space. Arc- ology explores the shorter time scales, and geochemistry the longer time scales of geophy- cal events: asteroidal and cometary collisions, magnetic reversals, continental formation and more. However, on Earth we cannot go back inde nitely, for much of the evidence of the very earliest days has been lost.
This book presents the first comprehensive history of innovation at NASA, bringing together experts in the field to illuminate how public-private and international partnerships have fueled new ways of exploring space since the beginning of space travel itself. Twelve case studies trace the messy, risky history of such partnerships, exploring the role of AT&T in the early development of satellite technology, the connections between the Apollo program and Silicon Valley, the rise of SpaceX, and more. Some of these projects have succeeded, and some have failed; all have challenged conventional methods of doing the public's business in space. Together, these essays offer new insights into how innovation happens, with invaluable lessons for policymakers, investors, economists, and members of the space community.
Andrew F. Nagy Originally published in the journal Space Science Reviews, Volume 139, Nos 1-4. DOI: 10. 1007/s11214-008-9353-0 (c) Springer Science+Business Media B. V. 2008 Keywords Aeronomy The term "aeronomy" has been used widely for many decades, but its origin has mostly been lost over the years. It was introduced by Sydney Chapman in a Letter to the Editor, entitled "Some Thoughts on Nomenclature," in Nature in 1946 (Chapman 1946). In that letter he suggested that aeronomy should replace meteorology, writing that the word "meteor is now irrelevant and misleading." This proposal was apparently not received with much support so in a short note in Weather in 1953 Chapman (1953)wrote: "If, despite its obvious convenience of brevity in itself and its derivatives, it does not commend itself to aeronomers, I think there is a case for modifying my proposal so that instead of the word being used to signify the study of the atmosphere in general, it should be adopted with the restricted sense of the science of the upper atmosphere, for which there is no convenient short word. " In a chapter, he wrote in a 1960 book (Chapman 1960), he give his nal and de nitive de nition, by stating that "Aeronomy is the science of the upper region of the atmosphere, where dissociation and ionization are important." The Workshop on "Comparative Aeronomy" was held at ISSI during the week of June 25-29, 2007.
A new and detailed picture of Mercury is emerging thanks to NASA's MESSENGER mission that spent four years in orbit about the Sun's innermost planet. Comprehensively illustrated by close-up images and other data, the author describes Mercury's landscapes from a geological perspective: from sublimation hollows, to volcanic vents, to lava plains, to giant thrust faults. He considers what its giant core, internal structure and weird composition have to tell us about the formation and evolution of a planet so close to the Sun. This is of special significance in view of the discovery of so many exoplanets in similarly close orbits about their stars. Mercury generates its own magnetic field, like the Earth (but unlike Venus, Mars and the Moon), and the interplay between Mercury's and the Sun's magnetic field affects many processes on its surface and in the rich and diverse exosphere of neutral and charged particles surrounding the planet. There is much about Mercury that we still don't understand. Accessible to the amateur, but also a handy state-of-the-art digest for students and researchers, the book shows how our knowledge of Mercury developed over the past century of ground-based, fly-by and orbital observations, and looks ahead at the mysteries remaining for future missions to explore.
James L. Burch*C. Philippe Escoubet Originally published in the journal Space Science Reviews, Volume 145, Nos 1-2, 1-2. DOI: 10. 1007/s11214-009-9532-7 (c) Springer Science+Business Media B. V. 2009 The IMAGE and CLUSTER spacecraft have revolutionized our understanding of the inner magnetosphere and in particular the plasmasphere. Before launch, the plasmasphere was not a prime objective of the CLUSTER mission. In fact, CLUSTER might not have ever observed this region because a few years before the CLUSTER launch (at the beginning of the 1990s), it was proposed to raise the perigee of the orbit to 8 Earth radii to make multipoint measu- ments in the current disruption region in the tail. Because of ground segment constraints, this proposal did not materialize. In view of the great depth and breadth of plasmaspheric research and numerous papers published on the plasmasphere since the CLUSTER launch, this choice certainly was a judicious one. The fact that the plasmasphere was one of the prime targets in the inner magnetosphere for IMAGE provided a unique opportunity to make great strides using the new and comp- mentary measurements of the two missions. IMAGE, with sensitive EUV cameras, could for the rst time make global images of the plasmasphere and show its great variability d- ing storm-time. CLUSTER, with four-spacecraft, could analyze in situ spatial and temporal structures at the plasmapause that are particularly important in such a dynamic system.
In the new space age after the end of the Cold War, orbit and frequency allocations, traffic control, safety, and a number of support services such as space weather forecast and orbital debris monitoring need to be coordinated transparently and effectively by clear rules at an international level. The establishment of an international civil space regulatory framework is the central theme of this book, in particular, the possible extension to space of the international regulatory framework model adopted for aviation more than 60 years ago with the establishment of the International Civil Aviation Organization (ICAO). The book also highlights the increased reliance of aviation safety on space-based navigation and communication systems, the increasing space systems traffic through the international airspace under the jurisdiction of the ICAO, and the emerging hybrid systems such as aero-spacecraft and space planes, to advocate the practical benefits of directly expanding the ICAO Convention domain beyond the airspace to include outer space up to the geostationary orbits.
J.L. Burch*V. Angelopoulos Originally published in the journal Space Science Reviews, Volume 141, Nos 1-4, 1-3. DOI: 10.1007/s11214-008-9474-5 (c) Springer Science+Business Media B.V. 2008 The Earth, like all the other planets, is continuously bombarded by the solar wind, which is variable on many time scales owing to its connection to the activity of the Sun. But the Earth is unique among planets because its atmosphere, magnetic eld, and rotation rates are each signi cant, though not dominant, players in the formation of its magnetosphere and its reaction to solar-wind inputs. An intriguing fact is that no matter what the time scale of solar-wind variations, the Earth's response has a de nite pattern lasting a few hours. Known as a magnetospheric substorm, the response involves a build-up, a crash, and a recovery. The build-up (known as the growth phase) occurs because of an interlinking of the geom- netic eld and the solar-wind magnetic eld known as magnetic reconnection, which leads to storage of increasing amounts of magnetic energy and stress in the tail of the mag- tosphere and lasts about a half hour. The crash (known as the expansion phase) occurs when the increased magnetic energy and stresses are impulsively relieved, the current system that supports the stretched out magnetic tail is diverted into the ionosphere, and bright, dynamic displays of the aurora appear in the upper atmosphere. The expansion and subsequent rec- ery phases result from a second magnetic reconnection event that decouples the solar-wind and geomagnetic elds.
This book's interdisciplinary scope aims at bridging various communities: 1) cosmochemists, who study meteoritic samples from our own solar system, 2) (sub-) millimetre astronomers, who measure the distribution of dust and gas of star-forming regions and planet-forming discs, 3) disc modellers, who describe the complex photo-chemical structure of parametric discs to fit these to observation, 4) computational astrophysicists, who attempt to decipher the dynamical structure of magnetised gaseous discs, and the effects the resulting internal structure has on the aerodynamic re-distribution of embedded solids, 5) theoreticians in planet formation theory, who aim to piece it all together eventually arriving at a coherent holistic picture of the architectures of planetary systems discovered by 6) the exoplanet observers, who provide us with unprecedented samples of exoplanet worlds. Combining these diverse fields the book sheds light onto the riddles that research on planet formation is currently confronted with, and paves the way for a comprehensive understanding of the formation, evolution, and dynamics of young solar systems. The chapters 'Chondrules - Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk', 'Dust Coagulation with Porosity Evolution' and 'The Emerging Paradigm of Pebble Accretion' are published open access under a CC BY 4.0 license via link.springer.com.
Franz Georg Hey summarises the development and testing of a micro-Newton thrust balance, as well as the downscaling of a High Efficiency Multistage Plasma Thruster to micro-Newton thrust levels. The balance is tailored to fully characterise thruster candidates for the space based gravitational wave detector LISA. Thus, thrust noise measurements in sub-micro-Newton regime can be performed in the overall LISA bandwidth. The downscaled thruster can be operated down to serval tens of micro-Newton with a comparably high specific impulse. About the Author Franz Georg Hey works as mechanical, thermal, propulsion architect and technical lead of the micro-Newton propulsion laboratory of Europe's leading air and spacecraft manufacturer. The author is participating on major programmes for future satellite and electric propulsion development. The author's research is performed in close collaboration with the Dresden University of Technology, the University of Bremen and the DLR Bremen.
Navigation in Space by X-ray Pulsars will consist of two parts. One is on modeling of X-ray pulsar signals. The second part explains how X-ray pulsar signals can be used to solve the relative navigation problem. This book formulates the problem, proposes a recursive solution, and analyzes different aspects of the navigation system. This book will be a comprehensive source for researchers. It provides new research results on signal processing techniques needed for X-ray pulsar based navigation in deep space.
Over the last few decades, both the aeronautics and space disciplines have greatly influenced advances in controls, sensors, data fusion and navigation. Many of those achievements that made the word "aerospace" synonymous with "high-tech" were enabled by innovations in guidance, navigation and control. Europe has seen a strong trans-national consolidation process in aerospace over the last few decades. Most of the visible products, like commercial aircraft, fighters, helicopters, satellites, launchers or missiles, are not made by a single country - they are the fruits of cooperation. No European country by itself hosts a specialized guidance, navigation and controls community large enough to cover the whole spectrum of disciplines. However, on a European scale, mutual exchange of ideas, concepts and solutions is enriching for all. The 1st CEAS Specialist Conference on Guidance, Navigation and Control is an attempt to bring this community together. This book is a selection of papers presented at the conference. All submitted papers have gone through a formal review process in compliance with good journal practices. The best papers have been recommended by the reviewers to be published in this book."
This book provides recommendations for thermal and structural modelling of spacecraft structures for predicting thermoelastic responses. It touches upon the related aspects of the finite element and thermal lumped parameter method. A mix of theoretical and practical examples supports the modelling guidelines. Starting from the system needs of instruments of spacecraft, the reader is supported with the development of the practical requirements for the joint development of the thermal and structural models. It provides points of attention and suggestions to check the quality of the models.The temperature mapping problem, typical for spacecraft thermoelastic analysis, is addressed. The principles of various temperature mapping methods are presented. The prescribed average temperature method, co-developed by the authors, is discussed in detail together with its spin-off to provide high quality conductors for thermal models. The book concludes with the discussion of the application of uncertainty assessment methods. The thermoelastic analysis chain is computationally expensive. Therefore, the 2k+1 point estimate method of Rosenblueth is presented as an alternative for the Monte Carlo Simuation method, bringing stochastic uncertainty analysis in reach for large thermoelastic problems.
"Of all the men who attacked the flying problem in the 19th century, Otto Lilienthal was easily the most important. His greatness appeared in every phase of the problem. No one equaled him in power to draw new recruits to the cause; no one equaled him in fullness and dearness of understanding of the principles of flight; no one did so much to convince the world of the advantages of curved wing surfaces; and no one did so much to transfer the problem of human flight to the open air where it belonged." These words were spoken by Wilbur Wright, who successfully accomplished the first powered flight together with his brother Orville in 1903 on the sand dunes of the Outer Banks off the coast of North Carolina. Wilbur was talking about the most important of their predecessors, Otto Lilienthal. Lilienthal attracted worldwide attention due to the spectacular photographs showing him in flight, made possible by technology that had only just been developed by him. This fortuitous union between a pioneer of aviation and the pioneers of so-called "instantaneous photography" is responsible for the immense contemporary popularity of Lilienthal's flights around the globe, the first ever free flights performed by man. This book traces the life of the German aviation pioneer, focusing on the designs of his many aircraft and the photographic documentation that has survived. The presentation ends with a remarkable research project conducted by one of the authors, right up to and including his own training exercises with Lilienthal's "normal soaring apparatus" and "large biplane". This project offered new insight into Lilienthal's work, and also led to a spectacular aerial meeting of Lilienthal's 1895 biplane and the Wright brothers' 1902 biplane at a historic location on the Outer Banks. The book provides access to video material, largely stemming from this project.
The main purpose of this book is to introduce the reader to the subject of solar activity and the connection with Earth's climate. It commences with a brief review of the historical progress on the understanding of the solar-terrestrial connection and moves on to an objective scrutiny of the various hypothesis. The text focuses on how knowledge about the solar cycle and Earth's climate is obtained. It includes discussion of observations, methods and the physics involved, with the necessary statistics and analysis also provided, including an examination of empirical relations between sunspots and the Earth's climate. The author reviews plausible physical mechanisms involved in any links between the solar cycle and the Earth's climate, emphasizing the use of established scientific methods for testing hypothesized relationships.
Presents a comprehensive review of physical processes in
astrophysical plasmas.
The proceedings published in this book document and foster the goals of the 11th International Space Conference on "Protection of Materials and Structures from Space Environment" ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.
This Festschrift dedicated to the 60th birth anniversary of Prof. Sandip K. Chakrabarti, a well-known Indian astrophysicist, presents a collection of contributions by about fifty scientists who work on diverse topics in contemporary astrophysics and space science including new and low-cost balloon borne experiments, planetary science, astrochemistry and the origin of life, ionospheric research and earthquake predictions, relativistic astrophysics around black holes, and finally, the observational signatures and radiative properties of compact objects. All the authors are well known scholars in their respective subject and are all PhD students of Prof. Sandip K. Chakrabarti. The book demonstrates a two-dimensional evolution of research areas triggered by Sandip Chakrabarti over the past few decades. The first dimension represents the evolution and diversification of Chakrabarti's own research in which new students were trained. A second dimension arises from the evolution of the research topics pursued by Chakrabarti's fifty odd doctoral students, many of whom have become renowned scientists in their own right, after starting with a certain subject under Chakrabarti and then migrating to completely new subjects with dexterity. The editors have compiled and edited the articles appropriately to some extent to suit the spirit of this Festschrift on the one hand and to keep balance in diverse topics on the other. Thus this volume also provides an overview for whosoever wishes to enter the important subjects of compact objects, astrochemistry, ionospheric science or space exploration in near space. New graduates, PhD scholars, teachers and researchers will benefit from this volume. Moreover it is a record of tremendous success of a school in a range of vast topics.
The Chinese Society of Aeronautics and Astronautics holds the Youth Science and Technology Forum biannually, which aims to assess the state of aviation science and technology, recognize advanced scientific and technological accomplishments, foster the development of young aviation science and technology talents, and provide a platform for young science and technology workers to track the frontier of science and technology, exchange novel ideas, and accurately meet the needs of the aviation industry. This book contains original, peer-reviewed research papers from the conference. Topics covered include, but are not limited to, navigation, guidance and control technologies, key technologies for aircraft design and overall optimization, aviation test technologies, aviation airborne systems, electromechanical technologies, structural design, aerodynamics and flight mechanics, other related technologies, advanced aviation materials and manufacturing technologies, advanced aviation propulsion technologies, and civil aviation transportation. Researchers, engineers, and students find this book to be a useful resource because the articles provided here discuss the most recent advancements in aviation science and technology.
The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity and basic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams and plates. Particular attention is devoted to the analysis of thin-walled beams under bending shearing and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods. This teaching tool based on practical situations and thorough methodology should prove valuable to both lecturers and students of structural analysis in engineering worldwide. This is a textbook for teaching structural analysis of aerospace structures. It can be used for 3rd and 4th year students in aerospace engineering, as well as for 1st and 2nd year graduate students in aerospace and mechanical engineering.
Bad Hofgastein who made the very successful Salzburger Abend with indi- nous music from Salzburg possible. Special thanks also to the former director of the Institute of Astronomy in Vienna, Prof. Paul Jackson for his generous private donation. We should not forget our hosts Mr. and Mrs. Winkler and their employees from the hotel who made the stay quite enjoyable. None of us will forget the very last evening, when the staff of kitchen under the le- ership of the cook himself came to offer us as farewell the famous Salzburger Nockerln, a traditional Austrian dessert. Everyone got a lot of scienti?c input during the lectures and the discussions and, to summarize, we all had a spl- did week in Salzburg in the Hotel Winkler. We all hope to come again in 2008 to discuss new results and new perspectives on a high level scienti?c standard in the Gasteinertal. Rudolf Dvorak and Sylvio Ferraz-Mello Celestial Mechanics and Dynamical Astronomy (2005) 92:1-18 (c) Springer 2005 DOI 10. 1007/s10569-005-3314-7 FROM ASTROMETRY TO CELESTIAL MECHANICS: ORBIT DETERMINATION WITH VERY SHORT ARCS (Heinrich K. Eichhorn Memorial Lecture) 1 2 ? ' ANDREA MILANI and ZORAN KNEZEVIC 1 Department of Mathematics, University of Pisa, via Buonarroti 2, 56127 Pisa, Italy, e-mail: milani@dm. unipi. it 2 Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia and Montenegro, e-mail: zoran@aob. bg. ac.
The desire to travel into space is as old as mankind itself. But it was not until the beginning of the 20th century that the idea became anything more than fiction. Although hot air balloons large enough to carry a person lifted off the ground in the late 1700s, it was the invention of powered flight-the airplane-that gave man hope of controlling his ascent into the skies and beyond. Once man was headed up, he could never again be satisfied being tied down to the earth's surface. The space age gave man hopes and dreams of a future in the exploration of the universe. These dreams were translated into souvenirs, toys, games, entertainment, and every-day items with the space theme. They are the artifacts of the space age. Collecting the Space Race explores these artifacts, beginning with the start of the 20th century. Included are first man on the moon items, the original Mercury astronaut items, Sputniks and satellites, fantasy items (Buck Rogers, Captain Video, Flash Gordon, Star Trek, etc.), UFOs, Ray Guns, space-theme postage stamps, mission patches, autographs, and space toys and robots. This book will inspire and answer some of the questions about the items that have been saved or collected as it exposes a broad field of things to collect.
Operations Research in Space and Air is a selection of papers reflecting the experience and expertise of international OR consulting companies and academic groups. The global market and competition play a crucial part in the decision making processes within the Space and Air industries and this book gives practical examples of how advanced applications can be used by Space and Air industry management. The material within the book provides both the basic background for the novice modeler and a useful reference for experienced modelers. Students, researchers and OR practitioners will appreciate the details of the modeling techniques, the processes that have been implemented and the computational results that demonstrate the benefits in applying OR in the Space and Airline industries. Advances in PC and Workstations technology, in optimiza tion engines and in modeling techniques now enable solving problems, never before attained by Operations Research. In recent years the Ital ian OR Society (AfRO, www. airo. org) has organized annual forums for researchers and practitioners to meet together to present and dis cuss the various scientific and technical OR achievements. The OR in Space 8 Air session of AfR02001 and AfR02002 Conferences, together with optimization tools' applications, presented recent results achieved by Alenia Spazio S. p. A. (Turin), Alitalia, Milan Polytechnic and Turin Polytechinc. With additional contributions from academia and indus try they have enabled us to capture, in print, today's 'state-of-the-art' optimization and data mining solutions."
|
You may like...
Space Science and Communication for…
Wayan Suparta, Mardina Abdullah, …
Hardcover
R4,726
Discovery Miles 47 260
Risk Assessment in Air Traffic…
Javier Alberto Perez Castan, Alvaro Rodriguez Sanz
Hardcover
|