![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Space science > Astronautics
There are all kinds of cool careers in space exploration! Astronauts are the superstars of space, but there are thousands of other women and men behind the scenes who make space exploration possible. This book is for girls, young women, and anyone else interested in learning about exciting careers in space exploration. Take a ride with Laura S Woodmansee and find out what it's like to be a woman of space. Would you like to know what it's like to be a space scientist searching for life beyond Earth? An engineer designing a spacecraft to send to Mars? Or an artist who creates beautiful space paintings and illustrations? Find out about these careers and more. You can be an accountant, a security officer, a pilot, a doctor, a biologist, a mission control worker, outreach educator, a teacher, a science writer, or anything else. They are all needed in space exploration. You don't have to be an astronaut to work in space. You can do anything you want! Read about how you can get involved in space exploration today. Join the club of cool space explorers who love what they are doing and wouldn't trade their career for a million pounds!;For the next generation of explorers, this book is more than just career advice. It is packed with interesting stories from women all over the planet who are doing what they love! The CD-ROM features: Exclusive video interviews with Mars Pathfinder Engineer Donna Shirley, Astro-Mom Lori Garver, and Aerospace Engineer Leslie Wickman; Listen to the music of the galaxies: an exclusive audio interview with Astrophysicist & Celestial Musician Fiorella Terenzi; "Women in Science: Mentors at NASA's Jet Propulsion Lab" (NASA video); Brochures on various space careers (Adobe Acrobat format).
This book provides systematic descriptions of design methods, typical techniques, and validation methods for lunar soft landers, covering their environmental design, system design, sub-system design, assembly, testing and ground test validation based on the Chang'e-3 mission. Offering readers a comprehensive, systematic and in-depth introduction to the technologies used in China's lunar soft landers, it presents detailed information on the design process for Chang'e-3, including methods and techniques that will be invaluable in future extraterrestrial soft lander design. As such, the book offers a unique reference guide for all researchers and professionals working on deep-space missions around the globe.
A momentous look at the private companies driving the revolutionary new space race. In 2008, Elon Musk's SpaceX became the first private company to build a low-cost rocket that could reach orbit. Suddenly Silicon Valley, not NASA, was the epicentre of the new Space Age. Ashlee Vance follows four pioneering companies - Astra, Firefly, Planet Labs and Rocket Lab - as they race to control access to outer space. While the space tourism ambitions of billionaires such as Bezos and Branson make headlines, these under-the-radar companies are striving to monetise Earth's lower orbit; to connect, analyse and monitor everything on Earth. With unprecedented access to private company headquarters, labs and top-secret launch locations - from the US to New Zealand, Ukraine to India - Vance presents a gripping account of private jets, communes, gun-toting bodyguards, drugs, espionage investigations and multimillionaires guzzling booze as their fortunes disappear. This is the most pressing and controversial technology story of our time. Welcome to the new Wild West above the clouds.
This book provides a guide to engineering successful and reliable products for the NewSpace industry. By discussing both the challenges involved in designing technical artefacts, and the challenges of growing an organisation, the book presents a unique approach to the topic. New Space Systems Engineering explores numerous difficulties encountered when designing a space system from scratch on limited budgets, non-existing processes, and great deal of organizational fluidity and emergence. It combines technical topics related to design, such as system requirements, modular architectures, and system integration, with topics related to organizational design, complexity, systems thinking, design thinking and a model based systems engineering. Its integrated approach mean this book will be of interest to researchers, engineers, investors, and early-stage space companies alike. It will help New Space founders and professionals develop their technologies and business practices, leading to more robust companies and engineering development.
This book offers essential information on China's human spacecraft technologies, reviewing their evolution from theoretical and engineering perspectives. It discusses topics such as the design of manned spaceships, cargo spacecraft, space laboratories, space stations and manned lunar and Mars detection spacecraft. It also addresses various key technologies, e.g. for manned rendezvous, docking and reentry. The book is chiefly intended for researchers, graduate students and professionals in the fields of aerospace engineering, control, electronics & electrical engineering, and related areas.
The aerospace community has long recognized and repeatedly emphasizes the importance of reliability for space systems. Despite this, little has been published in book form on the topic. "Spacecraft Reliability and Multi-state Failures" addresses this gap in the literature, offering a unique focus on spacecraft reliability based on extensive statistical analysis of system and subsystem anomalies and failures. The authors provide new results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data that will be particularly useful to spacecraft manufacturers and designers, for example in guiding satellite (and subsystem) test and screening programs and providing an empirical basis for subsystem redundancy and reliability growth plans. The authors develop nonparametric results and parametric models of spacecraft and spacecraft subsystem reliability and multi-state failures, quantify the relative contribution of each subsystem to the failure of the satellites thus identifying the subsystems that drive spacecraft unreliability, and propose advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks. "Spacecraft Reliability and Multi-state Failures"provides new nonparametric results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data;develops parametric models of spacecraft and spacecraft subsystem reliability and multi-state failuresquantifies the relative contribution of each subsystem to the failure of the satellitesproposes advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks.provides a dedicated treatment of the reliability and subsystem anomalies of communication spacecraft in geostationary orbit.
The Lunar Reconnaissance Orbiter (LRO) was successfully launched on June 18, 2009 and joined an international eet of satellites (Japan's SELENE/Kaguya, China's Chang'E, and India's Chandrayaan-1) that have recently orbited the Moon for scienti c exploration p- poses. LRO is the rst step to ful ll the US national space goal to return humans to the Moon's surface, which is a primary objective of NASA's Exploration Systems Mission - rectorate (ESMD). TheinitialLROmissionphasehasaone-yeardurationfullyfundedunder ESMD support. LRO is expected to have an extended phase of operations for at least two additional years to undertake further lunar science measurements that are directly linked to objectives outlined in the National Academy of Science's report on the Scienti c Context for Exploration of the Moon (SCEM). All data from LRO will be deposited in the Planetary Data System (PDS) archive so as to be usable for both exploration and science by the widest possible community. A NASA Announcement of Opportunity (AO) solicited proposals for LRO instruments with associated exploration measurement investigations. A rigorous evaluation process - volving scienti c peer review, in combination with technical, cost and management risk assessments, recommended six instruments for LRO development and deployment. The competitively selected instruments are: Cosmic Ray Telescope for the Effects of Rad- tion (CRaTER), Diviner Lunar Radiometer Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser - timeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC).
This book discusses autonomous spacecraft navigation based on X-ray pulsars, analyzing how to process X-ray pulsar signals, how to simulate them, and how to estimate the pulse's time of arrival based on epoch folding. In turn, the book presents a range of X-ray pulsar-based spacecraft positioning/time-keeping/attitude determination methods. It also describes the error transmission mechanism of the X-ray pulsar-based navigation system and its corresponding compensation methods. Further, the book introduces readers to navigation based on multiple measurement information fusion, such as X-ray pulsar/traditional celestial body integrated navigation and X-ray pulsar/INS integrated navigation. As such, it offers readers extensive information on both the theory and applications of X-ray pulsar-based navigation, and reflects the latest developments in China and abroad.
This book presents fundamental theories, design and testing methodologies, and engineering applications concerning spacecraft thermal control systems, helping readers gain a comprehensive understanding of spacecraft thermal control systems and technologies. With abundant design methods, advanced technologies and typical applications to help them grasp the basic concepts and principles of engineering applications, it is mainly intended for engineering and technical staff engaged in spacecraft thermal control areas. The book discusses the thermal environments commonly used for space flight missions, rules and regulations for system design, thermal analysis and simulation, and thermal testing methods, as well as the design and validation of the thermal control systems for Chinese spacecraft, such as the Shenzhou spacecraft and Chang'e Lunar Lander and Rover. It also introduces them to communication and remote sensing satellites and presents advanced thermal control technologies developed in recent years, including heat transfer, heat insulation, heating, refrigeration and thermal sensor technologies. Addressing the design and validation of thermal control systems for various types of Chinese spacecraft, the book offers a valuable theoretical and practical reference guide for researchers and engineers alike.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
This Palgrave Pivot investigates the efforts of five aerospace companies-SpaceX, Blue Origin, Virgin Galactic, Orbital Sciences, and the Boeing Company-to launch their entry into the field of commercial space transportation. Can private sector firms raise enough capital to end the usual dependence on government funding? What can historical examples of other large-scale transportation initiatives, such as the first transcontinental railway and the first commercial jetliner, teach us about the prospects of commercial space flight? As Howard E. McCurdy shows, commercializing space is a great experiment, the outcome of which will depend on whether new space entrepreneurs can attract support from a variety of traditional and nontraditional sources.
This book systematically presents the concept, history, implementation, theory system and basic methods of pulsar and space flight, illustrating the characteristics of pulsars. It also describes the classification of spacecraft navigation systems and the autonomous navigation technologies, as well as X-ray pulsar-based navigation systems (XPNAV) and discusses future navigation satellite systems in detail.
For all being interested in astronautics, this translation of Hermann Oberth s classic work is a truly historic event. Readers will be impressed with this extraordinary pioneer and his incredible achievement. In a relatively short work of 1923, Hermann Oberth laid down the mathematical laws governing rocketry and spaceflight, and he offered practical design considerations based on those laws."
This book includes the proceedings of the conference "Problems of the Geocosmos" held by the Earth Physics Department, St. Petersburg State University, Russia, every two years since 1996. Covering a broad range of topics in solid Earth physics and solar-terrestrial physics, as well as more applied subjects such as engineering geology and ecology, the book reviews the latest research in planetary geophysics, focusing on the interaction between the Earth's shells and the near-Earth space in a unified system. This book is divided into four sections: * Exploration and Environmental Geophysics (EG), which covers two broad areas of environmental and engineering geophysics - near-surface research and deep geoelectric studies; * Paleomagnetism and Rock Magnetism (P), which includes research on magnetostratigraphy, paleomagnetism applied to tectonics, environmental magnetism, and marine magnetic anomalies; * Seismology (S), which covers the theory of seismic wave propagation, Earth's structure from seismic data, global and regional seismicity and sources of earthquakes, and novel seismic instruments and data processing methods; and * Physics of Solar-Terrestrial Connections (STP), which includes magnetospheric phenomena, space weather, and the interrelationship between solar activity and climate.
This book presents high-quality contributions in the subject area of Aerospace System Science and Engineering, including topics such as: Trans-space vehicle systems design and integration, Air vehicle systems, Space vehicle systems, Near-space vehicle systems, Opto-electronic system, Aerospace robotics and unmanned system, Aerospace robotics and unmanned system, Communication, navigation, and surveillance, Dynamics and control, Intelligent sensing and information fusion, Aerodynamics and aircraft design, Aerospace propulsion, Avionics system, Air traffic management, Earth observation, Deep space exploration, and Bionic micro-aircraft/spacecraft. The book collects selected papers presented at the 4th International Conference on Aerospace System Science and Engineering (ICASSE 2020), organized by Shanghai Jiao Tong University, China, held on 14-16 July 2020 as virtual event due to COVID-19. It provides a forum for experts in aeronautics and astronautics to share new ideas and findings. ICASSE conferences have been organized annually since 2017 and hosted in Shanghai, Moscow, and Toronto in turn, where the three regional editors of the journal Aerospace Systems are located.
This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30-August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management. |
![]() ![]() You may like...
Orbital Relative Motion and Terminal…
Jean Albert Kechichian
Hardcover
R5,394
Discovery Miles 53 940
Space Supporting Africa - Volume 3…
Annette Froehlich, Nicolas Ringas, …
Hardcover
R1,603
Discovery Miles 16 030
Magnetic Fields in the Solar System…
Hermann Luhr, Johannes Wicht, …
Hardcover
R5,979
Discovery Miles 59 790
Energetic Particles in the Heliosphere
George M. Simnett
Hardcover
Space, the Dormant Frontier - Changing…
Joan Johnson-Freese, Roger Handberg
Hardcover
R2,945
Discovery Miles 29 450
|