![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science > Astronautics
This is a modern textbook that guides the reader through the theory and practice of satellite orbit prediction and determination. Starting from the basic principles of orbital mechanics, it covers elaborate force models as well as precise methods of satellite tracking. Emphasis is on numerical treatment and a multitude of algorithms adopted in modern satellite trajectory computation are described in detail. The accompanying CD-ROM includes all source codes written in C++ and relevant data files for applications. The result is a powerful and unique spaceflight dynamics library which allows easy software extensions by the user. An extensive collection of Internet resources is provided through WWW hyperlinks to detailed and frequently updated online information on spaceflight dynamics. The book addresses students, scientist working in the field of navigation, geodesy and spaceflight technology and satellite engineers and operators focusing on spaceflight dynamics.
For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. It is previously published in Solar Physics journal, Vol. 273/2, 2011.
Solar sailing offers the possibility of low-cost long-distance missions, impossible for any other type of conventional spacecraft. The book provides a detailed account of solar sailing, at a high technical level but in a way accessible to the scientifically informed layman. Solar sail orbital dynamics and solar radiation pressure form the foundations of the book, but the engineering design of solar sails is also considered, along with potential mission applications. This book introduces the subject and at the same time provides a technical reference source.
This fourth edition of the bestselling Spacecraft Systems Engineering title provides the reader with comprehensive coverage of the design of spacecraft and the implementation of space missions, across a wide spectrum of space applications and space science. The text has been thoroughly revised and updated, with each chapter authored by a recognized expert in the field. Three chapters Ground Segment, Product Assurance and Spacecraft System Engineering have been rewritten, and the topic of Assembly, Integration and Verification has been introduced as a new chapter, filling a gap in previous editions. This edition addresses front-end system-level issues such as environment, mission analysis and system engineering, but also progresses to a detailed examination of subsystem elements which represents the core of spacecraft design. This includes mechanical, electrical and thermal aspects, as well as propulsion and control. This quantitative treatment is supplemented by an emphasis on the interactions between elements, which deeply influences the process of spacecraft design. Adopted on courses worldwide, Spacecraft Systems Engineering is already widely respected by students, researchers and practising engineers in the space engineering sector. It provides a valuable resource for practitioners in a wide spectrum of disciplines, including system and subsystem engineers, spacecraft equipment designers, spacecraft operators, space scientists and those involved in related sectors such as space insurance. In summary, this is an outstanding resource for aerospace engineering students, and all those involved in the technical aspects of design and engineering in the space sector.
Born into a family of migrant workers, toiling in the fields by the
age of six, Jose M. Hernandez dreamed of traveling through the
night skies on a rocket ship. REACHING FOR THE STARS is the
inspiring story of how he realized that dream, becoming the first
Mexican-American astronaut.
Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different from the newly discovered systems. Then the study of planetary systems and of exoplanets is presented from a more theoretical point of view. The book ends with an outlook to future astronomical projects, and a description of the search for life on exoplanets. This book addresses students and researchers who wish to better understand this newly expanding field of research.
Like planets in our solar system, exoplanets form, evolve, and interact with their host stars in many ways. As exoplanets acquire material and grow to the final size, their atmospheres are subjected to intense UV and X-radiation and high-energy particle bombardment from the young host star. Whether a planet can retain its atmosphere and the conditions for significant mass loss both depend upon the strength of the host star's high-energy radiation and wind, the distance of the exoplanet from its host star, the gravitational potential of the exoplanet, and the initial chemical composition of the exoplanet atmosphere. This introductory overview describes the physical processes responsible for the emission of radiation and acceleration of winds of host stars that together control the environment of an exoplanet, focusing on topics that are critically important for understanding exoplanetary atmospheres but are usually not posed from the perspective of host stars. Accordingly, both host stars and exoplanets are not studied in isolation but are treated as integrated systems. Stellar magnetic fields, which are the energy source for activity phenomena including high-energy radiation and winds, play a critical role in determining whether exoplanets are habitable. This text is primarily for researchers and graduate students who are studying exoplanet atmospheres and habitability, but who may not have a background in the physics and phenomenology of host stars that provide the environment in which exoplanets evolve. It provides a comprehensive overview of this broad topic rather than going deeply into many technical aspects but includes a large list of references to guide those interested in pursuing these questions. Nonspecialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary exoplanet research.
Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and Attitude Determination Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation
This monograph addresses the legal and policy issues relating to the commercial exploitation of natural resources in outer space. It begins by establishing the economic necessity and technical feasibility of space mining today, an estimate of the financial commitments required, followed by a risk analysis of a commercial mining venture in space, identifying the economic and legal risks. This leads to the recognition that the legal risks must be minimised to enable such projects to be financed. This is followed by a discussion of the principles of international space law, particularly dealing with state responsibility and international liability, as well as some of the issues arising from space mining activities. Much detail is devoted to the analysis of the content of the common heritage of mankind doctrine. The monograph then attempts to balance such interests in creating a legal and policy compromise to create a new regulatory regime.
A lively and engaging exploration of orbital mechanics and its role
in aerospace design and development Inspired by its author's
internationally renowned short course by the same name, Orbital
Mechanics is a practical introduction to a field of study of
crucial importance to today's aerospace initiatives. Drawing upon
nearly four decades of experience as an aerospace engineer and
student of orbital mechanics, Tom Logsdon provides aerospace
professionals and students with many important and useful insights
into the ways in which orbiting bodies interact and the behavior of
satellites and rockets traveling through space. From the
investigations of Renaissance astronomers to contemporary
trajectory control systems, Logsdon covers all the bases,
including:
Failure is always an option... For more than 50 years, NASA's Mission Control has been known for two things: perfect decision making in extreme situations and producing generations of steely-eyed missile men and women who continue that tradition. A key to that legacy of brilliant performance is a particular brand of leadership, especially at the working level in Mission Control. Take the ultimate insiders look at the leadership values and culture that created the best team on this planet. Paul Sean Hill was responsible for NASA's Mission Operations support for manned space flight from 2007-2011. In this candid book he shows that the secret to Mission Control's success has never been rocket science and that the real practice of perfect decision making can be applied to any organisation or team. By demonstrating how his Mission Control team nurtured a culture which has delivered impossible wins for decades, Hill provides a guide for all leaders to boost their company's performance at all levels. Whether failure means cost and schedule overruns, quality reduction, loss of market share, bankruptcy - or putting someone's life a risk, how we lead can determine whether even small mistakes are dealt with or are left to snowball out of control and destroy an enterprise. Discover how to take leadership from the Mission Control Room to your boardroom and beyond, and achieve this out-of-this-world leadership environment in your team.
This book summarizes what is currently known about gravity sensing and response mechanisms in microorganisms, fungi, lower and higher plants; starting from the historical eye-opening experiments from the 19th century up to today's extremely rapid advancing cellular, molecular and biotechnological research. All forms of life are constantly exposed to gravity and it can be assumed that almost all organisms have developed sensors and respond in one way or the other to the unidirectional acceleration force,this books shows us some of these different ways. The book is written for plant biologists and microbiologists as well as scientists interested in space and gravitational biology.
The book introduces readers to the concept of weightlessness and microgravity, and presents several examples of microgravity research in fluid physics, the material sciences and human physiology. Further, it explains a range of basic physical concepts (inertia, reference frames, mass and weight, accelerations, gravitation and weightiness, free fall, trajectories, and platforms for microgravity research) in simple terms. The last section addresses the physiological effects of weightlessness. The book's simple didactic approach makes it easy to read: equations are kept to a minimum, while examples and applications are presented in the appendices. Simple sketches and photos from actual space missions illustrate the main content. This book allows readers to understand the space environment that astronauts experience on board space stations, and to more closely follow on-going and future space missions in Earth orbit and to Mars.
This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether's first theorem. The advected invariants are related to fluid relabeling symmetries - so-called diffeomorphisms associated with the Lagrangian map - and are obtained by applying the Euler-Poincare approach to Noether's second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels' theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman's direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfven simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.
Manned space programs attract the most media attention, and it is not hard to understand why: the danger, the heroism, the sheer adventure we as earthbound observers can imagine when humans are involved. But robotic missions deserve a respectful and detailed history and analysis of their own, and this book provides it. Instead of describing one specific spacecraft or mission, Michel van Pelt offers a "behind the scenes" look at the life of a space probe from its first conceptual design to the analysis of the scientific data returned by the spacecraft.
Choice Highly Recommended Title, January 2020 This special edition of Apollo in Perspective marks the 50th anniversary of the Apollo 11 Moon landing in 1969. Updated and revised throughout, it takes a retrospective look at the Apollo space program and the technology that was used to land a man on the Moon. In addition, there is a new chapter looking forward to the future of contemporary spaceflight in returning to the Moon (project Artemis) and going on to Mars. Using simple illustrations and school-level mathematics, it explains the basic physics and technology of spaceflight, from how rockets work to the dynamics of orbits and how to simulate gravity in a rotating spacecraft. A mathematical appendix shows how some of the formulas can be derived. This is an excellent introduction to astronautics for anyone interested in space and spaceflight. Features: Accessible, written in a friendly and informal style Contains real-world examples Updated throughout, with new chapters on the Apollo missions and the immediate future of human spaceflight From the Foreword "I am sure there is a woman or a man alive today who will land on the Moon and on Mars. This book will certainly help them be ready for such a journey. Most importantly, it explains not only what happened 50 years ago, but how the Apollo missions happened, and the science that is required to do it again, or to go further, to Mars. If the reader is younger, still in school and perhaps considering the sciences, this book will introduce ideas that will help you choose the subjects to study which can help you to make your space travel a reality. For others, the book will be an exciting and thought provoking read that gives a vision of the near future in space, which all of us on planet Earth will be able to enjoy as the adventure unfolds."- Michael Foale, CBE, former-NASA astronaut
This book explores the relations between physical parameters of extrasolar planets and their respective parent stars. Planetary parameters are often directly dependent upon their stellar counterparts. In addition, the star is almost always the only visible component of the system and contains most of the system mass. Consequently, the parent star heavily influences every aspect of planetary physics and astrophysics. Drs. Kaspar von Braun and Tabetha Boyajian use direct methods to characterize exoplanet host starts that minimize the number of assumptions needed to be made in the process. The book provides a background on interferometric techniques for stellar diameter measurements, illustrates the authors' approach on using additional data to fully characterize the stars, provides a comprehensive update on the current state of the field, and examines in detail a number of historically significant and well-studied exoplanetary systems.
Space is far bigger than humanity can conceive. Although our ancestors visually examined the skies to make sense of the Universe, space exploration in its truest sense is just a moment in this historical timeline, yet it is how we've significantly improved our understanding of the cosmos. Space Exploration begins with the evolution of astronomy, including notable characters, scientific breakthroughs and pinnacle moments. It delves into the development of robotic spacecraft and what uncrewed and crewed missions above and beyond our planet have uncovered. It questions how this knowledge will aid us in our future space endeavours, and the myriad questions that remain unanswered.
This volume documents the contributions presented at the Seventh Scientific Meeting of the Spanish Astronomical Society (Sociedad Española de AstronomÃa, SEA). The event bought together 301 participants who presented 161 contributed talks and 120 posters, the greatest number of contributions in the history of the meeting. The fact that most exciting items of the current astronomical research were addressed in the meeting is proof of the good health of the SEA, a consolidated organization founded fifteen years ago in Barcelona.
This book addresses the problems of Geocosmos and provides a snapshot of the current research in a broad area of Earth Sciences carried out in Russia and elsewhere. The themes covered include solar physics, physics of magnetosphere, ionosphere and atmosphere, solar-terrestrial coupling links, seismology, geoelectricity, paleomagnetism and rock magnetism, as well as cross-disciplinary studies. The proceedings are carefully edited, providing a panoramic outlook of a broad area of Earth Sciences. The readership includes colleague researchers, students and early career scientists. The proceedings will help the readers to look at their research fields from various points of view. Problems of Geocosmos conferences are held by Earth Physics Department, St. Petersburg University bi-annually since 1994. It is the largest forum of this kind in Russia/former Soviet Union attracting up to 200 researchers in Earth and magnetospheric physics.
Describes the instruments and initial results of the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory. This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS), one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope. These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations. This volume is aimed at graduate students and researchers working in the field of solar physics and space sciences. Originally published in Solar Physics, Vol. 288, Issue 1, 2013, and Vol. 289, Issue 11, 2014.
This thesis describes the essential features of Moon-plasma interactions with a particular emphasis on the Earth's magnetotail plasma regime from both observational and theoretical standpoints. The Moon lacks a dense atmosphere as well as a strong intrinsic magnetic field. As a result, its interactions with the ambient plasma are drastically different from solar-wind interactions with magnetized planets such as Earth. The Moon encounters a wide range of plasma regime from the relatively dense, cold, supersonic solar-wind plasma to the low-density, hot, subsonic plasma in the geomagnetic tail. In this book, the author presents a series of new observations from recent lunar missions (i.e., Kaguya, ARTEMIS, and Chandrayaan-1), demonstrating the importance of the electron gyro-scale dynamics, plasma of lunar origin, and hot plasma interactions with lunar magnetic anomalies. The similarity and difference between the Moon-plasma interactions in the geomagnetic tail and those in the solar wind are discussed throughout the thesis. The basic knowledge presented in this book can be applied to plasma interactions with airless bodies throughout the solar system and beyond.
A new and detailed picture of Mercury is emerging thanks to NASA's MESSENGER mission that spent four years in orbit about the Sun's innermost planet. Comprehensively illustrated by close-up images and other data, the author describes Mercury's landscapes from a geological perspective: from sublimation hollows, to volcanic vents, to lava plains, to giant thrust faults. He considers what its giant core, internal structure and weird composition have to tell us about the formation and evolution of a planet so close to the Sun. This is of special significance in view of the discovery of so many exoplanets in similarly close orbits about their stars. Mercury generates its own magnetic field, like the Earth (but unlike Venus, Mars and the Moon), and the interplay between Mercury's and the Sun's magnetic field affects many processes on its surface and in the rich and diverse exosphere of neutral and charged particles surrounding the planet. There is much about Mercury that we still don't understand. Accessible to the amateur, but also a handy state-of-the-art digest for students and researchers, the book shows how our knowledge of Mercury developed over the past century of ground-based, fly-by and orbital observations, and looks ahead at the mysteries remaining for future missions to explore.
This work presents a study of methods useful for modeling and understanding dynamical systems in the Galaxy. A natural coordinate system for the study of dynamical systems is the angle-action coordinate system. New methods for the approximation of the action-angle variables in general potentials are presented and discussed. These new tools are applied to the construction of dynamical models for two of the Galaxy’s components: tidal streams and the Galactic disc. Tidal streams are remnants of tidally stripped satellites in the Milky Way that experience the effects of the large scale structure of the Galactic gravitational potential, while the Galactic disc provides insights into the nature of the Galaxy near the Sun. Appropriate action-based models are presented and discussed for these components, and extended to include further information such as the metallicity of stars. |
You may like...
Words About Mozart - Essays in Honour of…
Dorothea Link, Judith Nagley
Hardcover
R3,299
Discovery Miles 32 990
|