![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science > Astronautics
This book aims to contribute significantly to the understanding of issues of value (including the ultimate value of space-related activities) which repeatedly emerge in interdisciplinary discussions on space and society. Although a recurring feature of discussions about space in the humanities, the treatment of value questions has tended to be patchy, of uneven quality and even, on occasion, idiosyncratic rather than drawing upon a close familiarity with state-of-the-art ethical theory. One of the volume's aims is to promote a more robust and theoretically informed approach to the ethical dimension of discussions on space and society. While the contributions are written in a manner which is accessible across disciplines, the book still withstands scrutiny by those whose work is primarily on ethics. At the same time it allows academics across a range of disciplines an insight into current approaches toward how the work of ethics gets done. The issues of value raised could be used to inform debates about regulation, space law and protocols for microbial discovery as well as longer-range policy debates about funding.
Presents a comprehensive approach to the open questions in solar cosmic ray research and includes consistent and detailed considerations of conceptual, observational, theoretical, experimental and applied aspects of the field. The results of solar cosmic ray (SCR) investigations from 1942 to the present are summarized in this book. It treats the research questions in a self-contained form in all of its associations, from fundamental astrophysical aspects to geophysical, aeronautical and cosmonautical applications. A large amount of new data is included, which has been accumulated during the last several decades of space research. This second edition contains numerous updates and corrections to the text, figures and references. The author has also added several new sections about GLEs and radiation hazards. In addition, an extensive bibliography is provided, which covers non-partially the main achievements and failures in the field. This volume is aimed at graduate students and researchers in solar physics and space science.
Human migration to space will be the most profound catalyst for evolution in the history of humankind, yet this has had little impact on determining our strategies for this next phase of exploration. Habitation in space will require extensive technological interfaces between humans and their alien surroundings and how they are deployed will critically inform the processes of adaptation. As humans begin to spend longer durations in space-eventually establishing permanent outposts on other planets-the scope of technological design considerations must expand beyond the meager requirements for survival to include issues not only of comfort and well-being, but also of engagement and negotiation with the new planetary environment that will be crucial to our longevity beyond Earth. Approaching this question from an interdisciplinary approach, this dissertation explores how the impact of interior space architecture can meet both the physical and psychological needs of future space colonists and set the stage for humankind to thrive and grow while setting down new roots beyond Earth.
This book deals with different aspects of small satellites for Earth observation: programmatics; current and planned Earth observation missions; spacebased instruments; satellite constellations; satellite subsystems;spacecraft bus systems; lessons learned; special aspects (e.g. thermal control, integration and test, launch services, ground station).The material provided is collected from the 6th IAA Symposium on Small Satellites for Earth Observation, initiated by the International Academy of Astronautics (IAA), and hosted by DLR, the German Aerospace Center. The participation of scientists, engineers, and managers from 24 countries reflected the high interest in the use of small satellites for dedicated missions applied to Earth observation.
The 17 chapters of this book grew out of the tutorial lectures given by leading world-class experts at the NATO Advanced Research Workshop "Effects of Space Weather on Technology Infrastructure" - ESPRIT, which was held in Rhodes on March 25-29, 2004. All manuscripts were refereed and subsequently meticulously edited by the editor to ensure the highest quality for this monograph. I owe particular thanks to the lecturers of the ESPRIT Advanced Research Workshop for producing these excellent tutorial reviews, which convey the essential knowledge and the latest advances in our field. Due to the breadth, extensive literature citations and quality of the reviews we expect this publication to serve extremely well as a reference book. Multimedia material referring to individual chapters of the book is accessible on the accompanying CD. The aim of ESPRIT was to assess existing knowledge and identify future actions regarding monitoring, forecasting and mitigation of space weather induced malfunction and damage of vital technological systems operating in space and on the ground.
"Spacecraft Sensors," the first of its kind, offers a comprehensive review of many aspects and intricacies of sensors used in the spacecraft industry. It covers sensor development from concept, design, and cost, to building, testing, interfacing, integrating, and on-orbit operation. It is intended for the specialist or non-specialist engineer, scientist, and those involved in the business aspect of the spacecraft industry. Focusing on how these various disciplines contribute to the development of a sensor used in space, this key text: Explains how mathematics, physics, business, and engineering-based concepts are used to develop and design a sensor which complies with a set of specific requirements. Discusses essential topics such as cost estimation, signal processing, noise reduction, filters, phased arrays, radars, optics, and radiometers used in space operation. Covers a range of typical sensors used in the spacecraft industry such as infrared, passive microwave, radars and spacebased GPS sensors. Concludes each chapter with examples of past and current orbiting sensors such as DSP, SBIRS, CHAMP, LANDSAT, and GOES to illustrate how concepts are applied. Includes the Matlab codes used to create the example plots in order to give the reader a starting point for further analysis "Spacecraft Sensors" is an invaluable resource for engineers, technical consultants, those in the business division, and research scientists associated with spacecraft projects. It is also an excellent textbook for undergraduate and postgraduate students studying the development, design and applications of spacebased sensors.
M. Rycroft, FacultyMember, InternationalSpaceUniversity e-mail: [email protected] "The Space Transportation Market: Evolution or Revolution?" was the question which was the focus for the papers presented, and also the Panel Discussions, at the fifth annual Symposium organised by the International Space University. Held in Strasbourg, France, for three lively days at the end of May 2000, the Symposium brought together representatives of the developers, providers and operators of space transportation systems, of regulatory bodies, and of users of the space transportation infrastructure in many fields, as well as experts in policy and market analysis. From the papers published here, it is clear that today's answer to the question tends more towards evolution than to revolution. The space launch industry is still not a fully mature one, and is still reliant on at least partial funding by governments. Better cooperation is essential between governments, launch providers, satellite builders and satellite operators in order to reduce the problems which the space transportation market faces today.
This book provides overviews of the new reduction as well as on the use of the Hipparcos data in a variety of astrophysical implementations. A range of new results are included. The Hipparcos data provide a unique opportunity for the study of satellite dynamics as the orbit covered a wide range of altitudes, showing in detail the different torques acting on the satellite. The book is accompanied by a DVD with the new catalogue and the underlying data.
Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.
Stars are born and die in clouds of gas and dust, opaque to most types of radiation, but transparent in the infrared. Requiring complex detectors, space missions and cooled telescopes, infrared astronomy is the last branch of this discipline to come of age. After a very successful sky survey performed in the eighties by the IRAS satellite, the Infrared Space Observatory, in the nineties, brought spectacular advances in the understanding of the processes giving rise to powerful infrared emission by a great variety of celestial sources. Outstanding results have been obtained on the bright comet Hale-Bopp, and in particular of its water spectrum, as well as on the formation, chemistry and dynamics of planetary objects in the solar system. Ideas on the early stages of stellar formation and on the stellar initial mass function have been clarified. ISO is the first facility in space able to provide a systematic diagnosis of the physical phenomena and the chemistry in the close environment of pre-main sequence stars, in the interstellar medium, and in the final stages of stellar life, using, among other indicators, molecular hydrogen, ubiquitous crystalline silicates, water and ices. ISO has dramatically increased our ability to investigate the power production, excitation and fuelling mechanism of galaxies of every type, and has discovered a new very cold dust component in galaxies. ISO has demonstrated that luminous infrared galaxies were brighter and much more numerous in the past, and that they played a dominant role in shaping present day galaxies and in producing the cosmic infrared background.
The Yearbook on Space Policy is the reference publication analyzing space policy developments. Each year it presents issues and trends in space policy and the space sector as a whole. Its scope is global and its perspective is European. The Yearbook also links space policy with other policy areas. It highlights specific events and issues, and provides useful insights, data and information on space activities. The Yearbook on Space Policy is edited by the European Space Policy Institute (ESPI) based in Vienna, Austria. It combines in-house research and contributions of members of the European Space Policy Research and Academic Network (ESPRAN), coordinated by ESPI. The Yearbook is designed for government decision-makers and agencies, industry professionals, as well as the service sectors, researchers and scientists and the interested public.
These Lecture Notes focus on the physics of relativistic jet sources in the universe, from galactic microquasars to active galactic nuclei (AGN). The early 21st century is an epoch in which a large number of high-energy astronomical missions are underway (RossiXTE, Chandra, XMM-Newton, INTEGRAL, Swift, Suzaku). The wealth of X-ray and gamma-ray data, coupled with ground-based observations in the optical/IR/radio bands, provides an increasing amount of information on microquasars, allowing the investigation of the physical processes for the formation and the evolution of relativistic jets, as well as their relation to the accretion process. The information obtained from galactic relativistic jet systems is particularly important in that it can be compared with that from active galactic nuclei. The comparative study of these two classes of objects allows us to overcome their separate intrinsic limitations and is the only way to arrive at a comprehensive understanding of the accretion/ejection phenomenon. This book covers the topic of accretion/ejection in relativistic jet sources with a broad approach, from microquasars to AGN, discussing both observational and theoretical aspects. The aim is to present a broad view of the field and the current standpoint now that the first comparative studies have opened the way to a global study at a mass scale. Written in a pedagogical lecture notes style, the book benefits students and newcomers to jet astrophysics as well as lecturers and researchers.
Provides a comprehensive summary on the physical models and current theory of black hole accretion, growth and mergers, in both the supermassive and stellar-mass cases. This title reviews in-depth research on accretion on all scales, from galactic binaries to intermediate mass and supermassive black holes. Possible future directions of accretion are also discussed. The following main themes are covered: a historical perspective; physical models of accretion onto black holes of all masses; black hole fundamental parameters; and accretion, jets and outflows. An overview and outlook on the topic is also presented. This volume summarizes the status of the study of astrophysical black hole research and is aimed at astrophysicists and graduate students working in this field. Originally published in Space Science Reviews, Vol 183/1-4, 2014.
JAXA 's Kaguya mission was successfully launched to the Moon on September 14, 2007 reaching its nominal 100 km circular orbit on October 19 after releasing two subsatellites Okina and Ouna in elliptical orbits with perilunes of 100 km and apolunes of 2400 and 800 km respectively. Observations were obtained for 10 months during the nominal mission beginning in mid-December 2007 followed by 8 month extended mission where data were obtained in lower orbits. The articles in this book were written by experts in each of the scientific areas of the Kaguya mission, and describe both the mission and the individual scientific investigations, including their objectives, the specifications of the instruments, their calibrations and initial results. This book is essential reading to all potential users of the Kaguya data and those interested in the scientific results of the mission, the properties of the lunar surface and crust and planetary exploration in general.
This second edition includes updated chapters from the first edition as well as five additional new chapters (Light detection and ranging (LiDAR), CORONA historical de-classified products, Unmanned Aircraft Vehicles (UAVs), GNSS-reflectometry and GNSS applications to climate variability), shifting the main focus from monitoring and management to extreme hydro-climatic and food security challenges and exploiting big data. Since the publication of first edition, much has changed in terms of technology, and the demand for geospatial data has increased with the advent of the big data era. For instance, the use of laser scanning has advanced so much that it is unavoidable in most environmental monitoring tasks, whereas unmanned aircraft vehicles (UAVs)/drones are emerging as efficient tools that address food security issues as well as many other contemporary challenges. Furthermore, global navigation satellite systems (GNSS) are now responding to challenges posed by climate change by unravelling the impacts of teleconnection (e.g., ENSO) as well as advancing the use of reflected signals (GNSS-reflectometry) to monitor, e.g., soil moisture variations. Indeed all these rely on the explosive use of "big data" in many fields of human endeavour. Moreover, with the ever-increasing global population, intense pressure is being exerted on the Earth's resources, leading to significant changes in its land cover (e.g., deforestation), diminishing biodiversity and natural habitats, dwindling fresh water supplies, and changing weather and climatic patterns (e.g., global warming, changing sea level). Environmental monitoring techniques that provide information on these are under scrutiny from an increasingly environmentally conscious society that demands the efficient delivery of such information at a minimal cost. Environmental changes vary both spatially and temporally, thereby putting pressure on traditional methods of data acquisition, some of which are highly labour intensive, such as animal tracking for conservation purposes. With these challenges, conventional monitoring techniques, particularly those that record spatial changes call for more sophisticated approaches that deliver the necessary information at an affordable cost. One direction being pursued in the development of such techniques involves environmental geoinformatics, which can act as a stand-alone method or complement traditional methods.
This book deals with an effect in celestial mechanics that has become quite important in exoplanet research. The Lidov-Kozai effect reveals itself in coherent periodic variations (which can be very large) of the inclination and eccentricity of an orbiting body in the presence of an inclined perturber. The effect is known to be important in the motion of many asteroids and planetary satellites. What is more, now it attracts more and more interest in the astronomical and astrophysical community due to its relevance for many exoplanetary systems. Recent years witnessed major advancements in its theory. It would be no exaggeration to say that nowadays the Lidov-Kozai effect becomes one of the most studied astrophysical effects. This book covers the multitude of the Lidov-Kozai effect's modern applications and its theory developments. It will be useful for researchers and students working in astrophysics, celestial mechanics, stellar dynamics, theoretical mechanics, space missions design, depending on the interests of the reader. The book is self-contained. It provides the full detailed coverage of the effect's theory and applications.
Nominated as an outstanding thesis by the Department of Physics and Astronomy of the University of New Mexico, this thesis seeks to identify the gamma-ray burst (GRB) progenitor. GRBs are extragalactic explosions that briefly outshine entire galaxies, but the mechanism that can release that much energy over a < 100 second burst is still a mystery. The leading candidate for the GRB progenitor is currently a massive star which collapses to form a black hole-accretion disk system that powers the GRB. GRB afterglows, however, do not always show the expected behavior of a relativistic blast wave interacting with the stellar wind that such a progenitor should have produced before its collapse. In this book, the author uses the Zeus-MP astrophysical hydrodynamics code to model the environment around a stellar progenitor prior to the burst. He then develops a new semi-analytic MHD and emission model to produce light curves for GRBs encountering these realistic density profiles. The work ultimately shows that the circumburst medium surrounding a GRB at the time of the explosion is much more complex than a pure wind, and that observed afterglows are entirely consistent with a large subset of proposed stellar progenitors.
This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere. It appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. This book will be of great interest to scientists in Space Physics as well as to those working in research organizations in governments and industries, university departments of physics, astronomy, space physics, and geophysics. Part of this book has already been published in a journal.
Since the first rocket-technology experiments of the early 20th century, space exploration has captivated the world. Recent advances and setbacks have included the new discoveries from the Galileo mission, the Mars Global Surveyor's revelation that water once existed on the Red Planet, the International Space Station, the advent of space tourism, and the devastating Space Shuttle disasters. This one-stop guide to space exploration provides a wealth of information for student researchers. A substantial 'Chronology of Events' and a narrative history outline the key events and people in the progression of space research and activity. Five topical essays--including a look at the Space Shuttle--examine several significant issues related to the politics and technology of space exploration from an international perspective. These chapters elucidate several sets of documents that give shape and substance to the larger story. Primary documents in this volume are organized by theme and represent the variety of materials available to anyone seeking a better understanding of the rise of space exploration. Also included are biographical sketches of key people associated with space flight, a listing of the human space flight missions undertaken since 1961, and an annotated bibliography of additional reading.
These proceedings summarize our present knowledge on astronomical molecules, highlight major problems to be addressed, and finally propose future work. Their theoretical understanding involves physics, numerical simulations and chemistry.
The book presents a unique overview of activities in human spaceflight and exploration and a discussion of future development possibilities. It provides an introduction for the general public interested in space and would also be suitable for students at university. The book includes the basics of the space environment and the effects of space travel on the human body. It leads through the challenges of designing life support systems for spacecraft as wells as space suits to protect astronauts during extravehicular activities. Research being carried out by humans in Earth orbit is being brought into context to other forms of space exploration. Between the end of 2007 and May 2009 ESA, the European Space Agency, carried out an astronaut recruitment process. It was the first time that astronauts had been recruited newly to the corps since its creation in 1998 and the positions were open to citizens of all of the member states of ESA. Two of the contributors to this book participated in the selection process and hence contribute to a general discussion of how one carries out such a selection programme. The book concludes with one person's experience of flying aboard the space shuttle on a mission to map planet Earth, bringing together topics taken up in earlier parts of the book.
This book contains the expanded lecture notes of the 32nd Saas-Fee Advanced Course. The three contributions present the central themes in modern research on the cold universe, ranging from cold objects at large distances to the physics of dust in cold clouds. |
You may like...
Cohomology of Arithmetic Groups - On the…
James W. Cogdell, Gunter Harder, …
Hardcover
R3,818
Discovery Miles 38 180
Numerical Solution of Partial…
Oleg P. Iliev, Svetozar D. Margenov, …
Hardcover
|