![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science > Astronautics
Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects-large unmanned and manned satellites (including the present International Space Station)-can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic
researchers in the fields of aerospace and mechanical engineering,
mathematics, astronomy and astrophysics, Spacecraft Formation
Flying is a technical yet accessible, forward-thinking guide to
this critical area of astrodynamics.
Among the most interesting fields in research are the emerging
possibilities to interface the human brain directly with machines,
e.g. with computers and robotic interfaces. The European Space
Agency's Advanced Concept team as a multidisciplinary team from
engineering, artificial intelligence, and neural engineering has
been working on the cutting edge of exploring brain machine
interfaces for application in space as solutions to limitations
astronauts face in space, and this book for the first time presents
the state-of-the-art-cohesively.
In recent years scientists have investigated a series of new
methods for non-rocket space launch, which promise to revolutionize
space launches and flight. Particularly in the current political
climate new, cheaper, and more fuel efficient methods are being
investigated. Such new methods include the gas tube method, cable
accelerators, tether launch systems, space elevators, solar and
magnetic sails, circle launcher space keepers and more.
Written with students of aerospace or aeronautical engineering firmly in mind, this is a practical and wide-ranging book that draws together the various theoretical elements of aircraft design - structures, aerodynamics, propulsion, control and others - and guides the reader in applying them in practice. Based on a range of detailed real-life aircraft design projects, including military training, commercial and concept aircraft, the experienced UK and US based authors present engineering students with an essential toolkit and reference to support their own project work. All aircraft projects are unique and it is impossible to provide a template for the work involved in the design process. However, with the knowledge of the steps in the initial design process and of previous experience from similar projects, students will be freer to concentrate on the innovative and analytical aspects of their course project. The authors bring a unique combination of perspectives and experience to this text. It reflects both British and American academic practices in teaching aircraft design. Lloyd Jenkinson has taught aircraft design at both Loughborough and Southampton universities in the UK and Jim Marchman has taught both aircraft and spacecraft design at Virginia Tech in the US.
Modern Spacecraft Guidance, Navigation, and Control: From System Modeling to AI and Innovative Applications provides a comprehensive foundation of theory and applications of spacecraft GNC, from fundamentals to advanced concepts, including modern AI-based architectures with focus on hardware and software practical applications. Divided into four parts, this book begins with an introduction to spacecraft GNC, before discussing the basic tools for GNC applications. These include an overview of the main reference systems and planetary models, a description of the space environment, an introduction to orbital and attitude dynamics, and a survey on spacecraft sensors and actuators, with details of their modeling principles. Part 2 covers guidance, navigation, and control, including both on-board and ground-based methods. It also discusses classical and novel control techniques, failure detection isolation and recovery (FDIR) methodologies, GNC verification, validation, and on-board implementation. The final part 3 discusses AI and modern applications featuring different applicative scenarios, with particular attention on artificial intelligence and the possible benefits when applied to spacecraft GNC. In this part, GNC for small satellites and CubeSats is also discussed. Modern Spacecraft Guidance, Navigation, and Control: From System Modeling to AI and Innovative Applications is a valuable resource for aerospace engineers, GNC/AOCS engineers, avionic developers, and AIV/AIT technicians.
Electrostatic Dust Mitigation and Manipulation Techniques for Planetary Dust explains how to control and remove dust in space due to the presence of a vacuum, abrasiveness of dust particles and electrostatic charge on particles. The book introduces innovative technologies that use electrostatic and di-electrophoretic forces to remove and transport small particles away from surfaces. In addition, it discusses how to resolve thermal control problems and reduce lung inhalation and eye irritation problems. The book includes two abrasive wear test devices that were designed to study the rate of volume wear for di?erent materials when subjected to lunar dust simulant of di?erent size ranges. This will be an ideal resource for space system engineers, space exploration researchers, and advanced students and professionals in space engineering.
There are all kinds of cool careers in space exploration! Astronauts are the superstars of space, but there are thousands of other women and men behind the scenes who make space exploration possible. This book is for girls, young women, and anyone else interested in learning about exciting careers in space exploration. Take a ride with Laura S Woodmansee and find out what it's like to be a woman of space. Would you like to know what it's like to be a space scientist searching for life beyond Earth? An engineer designing a spacecraft to send to Mars? Or an artist who creates beautiful space paintings and illustrations? Find out about these careers and more. You can be an accountant, a security officer, a pilot, a doctor, a biologist, a mission control worker, outreach educator, a teacher, a science writer, or anything else. They are all needed in space exploration. You don't have to be an astronaut to work in space. You can do anything you want! Read about how you can get involved in space exploration today. Join the club of cool space explorers who love what they are doing and wouldn't trade their career for a million pounds!;For the next generation of explorers, this book is more than just career advice. It is packed with interesting stories from women all over the planet who are doing what they love! The CD-ROM features: Exclusive video interviews with Mars Pathfinder Engineer Donna Shirley, Astro-Mom Lori Garver, and Aerospace Engineer Leslie Wickman; Listen to the music of the galaxies: an exclusive audio interview with Astrophysicist & Celestial Musician Fiorella Terenzi; "Women in Science: Mentors at NASA's Jet Propulsion Lab" (NASA video); Brochures on various space careers (Adobe Acrobat format).
Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems discusses the importance of reliable cryogenic systems, a pivotal part of everything from engine propulsion to fuel deposits. As some of the most efficient systems involve advanced cryogenic fluid management systems that present challenging issues, the book tackles issues such as the difficulty in obtaining data, the lack of quality data and models, and the complexity in trying to model these systems. The book presents models and experimental data based on rare and hard-to-obtain cryogenic data. Through clear descriptions of practical data and models, readers will explore the development of robust and flexible liquid acquisition devices (LAD) through component-level and full-scale ground experiments, as well as analytical tools. This book presents new and rare experimental data, as well as analytical models, in a fundamental area to the aerospace and space-flight communities. With this data, the reader can consider new and improved ways to design, analyze, and build expensive flight systems.
Endorsed by the International Association for the Advancement of Space Safety (IAASS) and drawing on the expertise of the world s leading experts in the field, Safety Design for Space Operations provides the practical how-to guidance and knowledge base needed to facilitate effective launch-site and operations safety in line with current regulations. With information on space operations safety design currently disparate and difficult to find in one place, this unique reference brings together essential material on: Best design practices relating to space operations, such as the design of spaceport facilities. Advanced analysis methods, such as those used to calculate launch and re-entry debris fall-out risk. Implementation of safe operation procedures, such as on-orbit space traffic management. Safety considerations relating to the general public and the environment in addition to personnel and asset protection. Taking in launch operations safety relating unmanned missions,
such as the launch of probes and commercial satellites, as well as
manned missions, Safety Design for Space Operations provides a
comprehensive reference for engineers and technical managers within
aerospace and high technology companies, space agencies, spaceport
operators, satellite operators and consulting firms.
The aerospace community has long recognized and repeatedly emphasizes the importance of reliability for space systems. Despite this, little has been published in book form on the topic. "Spacecraft Reliability and Multi-state Failures" addresses this gap in the literature, offering a unique focus on spacecraft reliability based on extensive statistical analysis of system and subsystem anomalies and failures. The authors provide new results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data that will be particularly useful to spacecraft manufacturers and designers, for example in guiding satellite (and subsystem) test and screening programs and providing an empirical basis for subsystem redundancy and reliability growth plans. The authors develop nonparametric results and parametric models of spacecraft and spacecraft subsystem reliability and multi-state failures, quantify the relative contribution of each subsystem to the failure of the satellites thus identifying the subsystems that drive spacecraft unreliability, and propose advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks. "Spacecraft Reliability and Multi-state Failures"provides new nonparametric results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data;develops parametric models of spacecraft and spacecraft subsystem reliability and multi-state failuresquantifies the relative contribution of each subsystem to the failure of the satellitesproposes advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks.provides a dedicated treatment of the reliability and subsystem anomalies of communication spacecraft in geostationary orbit.
Orbital Mechanics for Engineering Students, Fourth Edition, is a key text for students of aerospace engineering. While this latest edition has been updated with new content and included sample problems, it also retains its teach-by-example approach that emphasizes analytical procedures, computer-implemented algorithms, and the most comprehensive support package available, including fully worked solutions, PPT lecture slides, and animations of selected topics. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work, this book provides all the tools needed to fully understand the subject.
The Lunar Reconnaissance Orbiter (LRO) was successfully launched on June 18, 2009 and joined an international eet of satellites (Japan's SELENE/Kaguya, China's Chang'E, and India's Chandrayaan-1) that have recently orbited the Moon for scienti c exploration p- poses. LRO is the rst step to ful ll the US national space goal to return humans to the Moon's surface, which is a primary objective of NASA's Exploration Systems Mission - rectorate (ESMD). TheinitialLROmissionphasehasaone-yeardurationfullyfundedunder ESMD support. LRO is expected to have an extended phase of operations for at least two additional years to undertake further lunar science measurements that are directly linked to objectives outlined in the National Academy of Science's report on the Scienti c Context for Exploration of the Moon (SCEM). All data from LRO will be deposited in the Planetary Data System (PDS) archive so as to be usable for both exploration and science by the widest possible community. A NASA Announcement of Opportunity (AO) solicited proposals for LRO instruments with associated exploration measurement investigations. A rigorous evaluation process - volving scienti c peer review, in combination with technical, cost and management risk assessments, recommended six instruments for LRO development and deployment. The competitively selected instruments are: Cosmic Ray Telescope for the Effects of Rad- tion (CRaTER), Diviner Lunar Radiometer Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser - timeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC).
Progress in space safety lies in the acceptance of safety design
and engineering as an integral part of the design and
implementation process for new space systems. Safety must be seen
as the principle design driver of utmost importance from the outset
of the design process, which is only achieved through a culture
change that moves all stakeholders toward front-end loaded safety
concepts. This approach entails a common understanding and
mastering of basic principles of safety design for space systems at
all levels of the program organisation.
Manned Spacecraft Design Principles presents readers with a brief, to-the-point primer that includes a detailed introduction to the information required at the preliminary design stage of a manned space transportation system. In the process of developing the preliminary design, the book covers content not often discussed in a standard aerospace curriculum, including atmospheric entry dynamics, space launch dynamics, hypersonic flow fields, hypersonic heat transfer, and skin friction, along with the economic aspects of space flight. Key concepts relating to human factors and crew support systems are also included, providing users with a comprehensive guide on how to make informed choices from an array of competing options. The text can be used in conjunction with Pasquale Sforza's, Commercial Aircraft Design Principles to form a complete course in Aircraft/Spacecraft Design.
This book includes the proceedings of the conference "Problems of the Geocosmos" held by the Earth Physics Department, St. Petersburg State University, Russia, every two years since 1996. Covering a broad range of topics in solid Earth physics and solar-terrestrial physics, as well as more applied subjects such as engineering geology and ecology, the book reviews the latest research in planetary geophysics, focusing on the interaction between the Earth's shells and the near-Earth space in a unified system. This book is divided into four sections: * Exploration and Environmental Geophysics (EG), which covers two broad areas of environmental and engineering geophysics - near-surface research and deep geoelectric studies; * Paleomagnetism and Rock Magnetism (P), which includes research on magnetostratigraphy, paleomagnetism applied to tectonics, environmental magnetism, and marine magnetic anomalies; * Seismology (S), which covers the theory of seismic wave propagation, Earth's structure from seismic data, global and regional seismicity and sources of earthquakes, and novel seismic instruments and data processing methods; and * Physics of Solar-Terrestrial Connections (STP), which includes magnetospheric phenomena, space weather, and the interrelationship between solar activity and climate.
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. |
You may like...
The Great Tradition and Its Legacy - The…
Michael Cherlin, Halina Filipowicz, …
Hardcover
R2,844
Discovery Miles 28 440
Nanooptics, Nanophotonics…
Olena Fesenko, Leonid Yatsenko
Hardcover
New Trends in Mechanism and Machine…
Doina Pisla, Burkhard Corves, …
Hardcover
R5,241
Discovery Miles 52 410
|