![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science > Astronautics
This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.
Putting the "I" in IHY This book is about international cooperation. It demonstrates how the power of scienti?c imagination and investigation can bring together people form all continents in almost all countries around the globe. In presenting this impressive result, we can understand, how much unifying force the quest for understanding our universe and using outer space for that purpose have. Astronomy is far away from being a "political" area of science. But is has enormous political effects - and all of these effects are positive. This book about the international aspects and achievements of the "International Heliophysical Year (IHY) 2007" can be regarded as a compendium of the fertile impacts of conducting research in this ?eld. The main focus, as the title implicates, is the international cooperation, which has emerged from this grassroots initiative. North and South, industrialized and developing countries have been coordinating their efforts and have been learning from each other in a mutual partnership under a joint understanding of sharing the scienti?c bene?ts. Through this, trans-border networks have been created and scienti?c as well as cultural exchange took place.
This book includes a selection of 30 reviewed and enhanced manuscripts published during the 15th SpaceOps Conference held in May 2018 in Marseille, France. The selection was driven by their quality and relevance to the space operations community. The papers represent a cross-section of three main subject areas: Mission Management - management tasks for designing, preparing and operating a particular mission Spacecraft Operations - preparation and implementation of all activities to operate a space vehicle (crewed and uncrewed) under all conditions Ground Operations - preparation, qualification, and operations of a mission dedicated ground segment and appropriate infrastructure including antennas, control centers, and communication means and interfaces This book promotes the SpaceOps Committee's mission to foster the technical interchange on all aspects of space mission operations and ground data systems while promoting and maintaining an international community of space operations experts.
Living and working in extra-terrestrial habitats means being potentially vulnerable to very harsh environmental, social, and psychological conditions. With the stringent technical specifications for launch vehicles and transport into space, a very tight framework for the creation of habitable space is set. These constraints result in a very demanding "partnership" between the habitat and the inhabitant. This book is the result of researching the interface between people, space and objects in an extra-terrestrial environment. The evaluation of extra-terrestrial habitats in comparison to the user's perspective leads to a new framework, comparing these buildings from the viewpoint of human activity. It can be used as reference or as conceptual framework for the purpose of evaluation. It also summarizes relevant human-related design directions. The work is addressed to architects and designers as well as engineers.
This thesis focuses on the construction and application of an electron radiation belt kinetic model including various adiabatic and non-adiabatic processes. The terrestrial radiation belt was discovered over 50 years ago and has received a resurgence of interest in recent years. The main drivers of radiation belt research are the fundamental science questions surrounding its complex and dramatic dynamics and particularly its potential hazards posed to space-borne systems. The establishment of physics-based radiation belt models will be able to identify the contributions of various mechanisms, forecast the future radiation belt evolution and then mitigate its adverse space weather effects. Dr. Su is now an Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.
This volume explores the cross-linkages between the kinetic processes and macroscopic phenomena in the solar atmosphere, which are at the heart of our current understanding of the heating of the closed and open corona and the acceleration of the solar wind. The focus lies on novel data, on theoretical models that have observable consequences through remote sensing, and on near-solar and inner-heliosphere observations, such as anticipated by the upcoming Solar Orbiter and Solar Probe missions, which are currently developed by the international community. This volume is aimed at students and researchers active in solar physics and space science. Previously published in Space Science Reviews journal, Vol. 172, Nos. 1-4, 2012.
The goals of the ICPMSE-7 meeting, as in the past years, are to facilitate exchanges between members of the various engineering disciplines involved in development of space materials, incl. such aspects as environmental hazards of Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO) and Deep Space, ground-based qualification, and in-flight experiments and lessons learned from operational vehicles. The book continues to discuss topics started in the earlier publications and adds new data and results. The proceedings cover a range of inter-disciplinary topics concerning the protection of materials and structures in space and discussing the effects of the aggressive LEO as well as the GEO and Deep Space environments on materials and structures and the ways to predict and reduce these effects of short and long-term space missions.
Overview of Space Technology It has been over 50 years since the rst satellite was sent into orbit, and the impact of space technology can be felt in many aspects in our day to day life. In addition to the convenience of knowing exactly where we are on the planet via GPS satellites; or deciding what to pack for a trip based on forecasts from weather satellites; watching CNNinaremotevillageviabroadcasting satellites;therearenowsomecrucialen- ronmental uses of Space technologies in the areas of natural resources management and environmental monitoring. Remotely sensed data reveals an unparallel view of the Earth for systems that require synoptic or periodic observations such as inv- tory control, surveying, agriculture, business, mineralogy, hydrography, geology, land mass cover, land utilization and environment monitoring. The advancement of remote sensing has made remote sensed data more affordable and available to merge with a variety of data sources to create mash-ups. The amalgamation of these data sources into disciplines such as agriculture, urban planning, web applications, cartography, geodetic reference systems, and global navigation satellite systems, are an important advancement of space applications and space science. Space Technology and Millennium Development Goals (MDGs) The MDGs are a set of time-bound, measurable goals and targets that are global as well as country-speci c for combating poverty, hunger, diseases, illiteracy, envir- mental degradation and discrimination against women.
This publication presents the proceedings of ICPMSE-6, the sixth international conference on Protection of Materials and Structures from Space Environment, held in Toronto May 1-3, 2002. The ICPMSE series of meetings became an important part of the LEO space community since it was started in 1991. Since then, the meeting has grown steadily, attracting a large number of engineers, researchers, managers, and scientists from industrial companies, scientific institutions and government agencies in Canada, U. S. A. , Asia, and Europe, thus becoming a true international event. This year's meeting is gaining even stronger importance with the resumption of the ISS and other space projects in LEO, GEO and Deep Space. To reflect on these activities, the topics in the program have been extended to include protection of materials in GEO and Deep Space. The combination of a broad selection of technical and scientific topics addressed by internationally known speakers with the charm of Toronto and the hospitality of the organizers brings participants back year after year. The conference was hosted and organized by Integrity Testing Laboratory Inc. (ITL), and held at the University of Toronto's Institute for Aerospace Studies (UTIAS). The meeting was sponsored by the Materials and Manufacturing Ontario (MMO) and the CRESTech, two Ontario Centres of Excellence; Air Force Office of Scientific Research (AFOSR/NL); MD Robotics; EMS Technologies; The Integrity Testing Laboratory (ITL); and the UTIAS.
The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon s magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011."
The development of the space industry in the Asian and Pacific Rim region provides the context for this book. The two major countries hoping for leadership in the area (apart from China) are Japan and India, both of whom have significant launcher capabilities.There is a general introductory chapter which places the space programmes of the region in the comparative context of the other space-faring nations of the world. The author reviews the main space programmes of Japan and India in turn, concentrating on their origins, the development of launcher and space facilities, scientific and engineering programmes, and future prospects.The book concludes with a chapter comparing how similarly/differently Japan and India are developing their space programmes, how they are likely to proceed in the future, and what impact the programmes have had in their own region and what they have contributed so far to global space research.
The authors, leading representatives of Russian space research and industry, show the results and future prospects of astronautics at the start of the third millennium. The focus is on the development of astronautics in Russia in the new historical and economic conditions, but the book also covers the development in the USA, Europe, China, Japan, and India. It spotlights the basic trends in space related issues: necessary restructuring of space industry and spaceports, improvement of carrier rockets, booster units, spacecraft, and component elements. The possibilities of the wide use of space technologies and its numerous applications such as navigation and communication, space manufacturing, space biotechnology, pollution research, etc. are described. The book contains a huge amount of facts described in a way understandable without specialist knowledge and accompanied by many photographs, charts and diagrams, mostly in color. Therefore the book will be interesting both to experts and to lay readers.
Here is a history of the development of military missiles and space travel from World War II to the American visits to the Moon in 1969-1972. It stresses the relationship between the early stages of space exploration and the arms race, and that a dual path led to space flight. One was the development of unmanned long-range war rockets, the other, less often noted, was the rocket-powered research plane. The first path led through the intercontinental ballistic missile to the first artificial satellites and space capsule; the latter, more uniquely American, through the X-series and Skyrocket rocket planes to the X-15, and ultimately to the Space Shuttle. The early part of the book focuses on the Soviet-American race to develop the ICBM in the 1950s, and the first satellites, with particular attention paid to the events and reactions that followed the flight of Sputnik I in 1957 and the subsequent missile gap era.
The review articles collected in this volume present a critical assessment of particle acceleration mechanisms and observations from suprathermal particles in the magnetosphere and heliosphere to high-energy cosmic rays, thus covering a range of energies over seventeen orders of magnitude, from 103 eV to 1020 eV. The main themes are observations of accelerated populations from the magnetosphere to extragalactic scales and assessments of the physical processes underlying particle acceleration in different environments (magnetospheres, the solar atmosphere, the heliosphere, supernova remnants, pulsar wind nebulae and relativistic outflows). Several contributions review the status of shock acceleration in different environments and also the role of turbulence in particle acceleration. Observational results are compared with modelling in different parameter regimes. The book concludes with contributions on the status of particle acceleration research and its future perspectives. This volume is aimed at graduate students and researchers active in astrophysics and space science. Previously published in Space Science Reviews journal, Vol. 173 Nos. 1-4, 2012.
The aim of this book is the pedagogical exploration of the basic principles of quantum-statistical thermodynamics as applied to various states of matter - ranging from rare gases to astrophysical matter with high-energy density. The reader will learn in this work that thermodynamics and quantum statistics are still the concepts on which even the most advanced research is operating - despite of a flood of modern concepts, classical entities like temperature, pressure, energy and entropy are shown to remain fundamental. The physics of gases, plasmas and high-energy density matter is still a growing field and even though solids and liquids dominate our daily life, more than 99 percent of the visible Universe is in the state of gases and plasmas and the overwhelming part of matter exists at extreme conditions connected with very large energy densities, such as in the interior of stars. This text, combining material from lectures and advanced seminars given by the authors over many decades, is a must-have introduction and reference for both newcomers and seasoned researchers alike.
In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star's active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of "hot Jupiters" by NASA's Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet upper atmosphere and environment observations, exoplanet and stellar magnetospheres, and exoplanet observation and characterization. The book closes with an outlook on the future of this research field.
This book presents lecture materials from the Third LOFAR Data School, transformed into a coherent and complete reference book describing the LOFAR design, along with descriptions of primary science cases, data processing techniques, and recipes for data handling. Together with hands-on exercises the chapters, based on the lecture notes, teach fundamentals and practical knowledge. LOFAR is a new and innovative radio telescope operating at low radio frequencies (10-250 MHz) and is the first of a new generation of radio interferometers that are leading the way to the ambitious Square Kilometre Array (SKA) to be built in the next decade. This unique reference guide serves as a primary information source for research groups around the world that seek to make the most of LOFAR data, as well as those who will push these topics forward to the next level with the design, construction, and realization of the SKA. This book will also be useful as supplementary reading material for any astrophysics overview or astrophysical techniques course, particularly those geared towards radio astronomy (and radio astronomy techniques).
Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.
The book focuses on the orbital dynamics and mission trajectory (transfer or target trajectory) design of low-energy flight in the context of modern astrodynamics. It investigates various topics that either offer new methods for solving classical problems or address emerging problems that have yet to be studied, including low-thrust transfer trajectory design using the virtual gravity field method; transfer in the three-body system using invariant manifolds; formation flying under space-borne artificial magnetic fields; and the orbital dynamics of highly irregular asteroids. It also features an extensive study of the orbital dynamics in the vicinity of contact binary asteroids, including the 1:1 ground-track resonance, the equilibrium points and their stability, and the third-order analytical solution of orbital motion in the vicinity of the non-collinear equilibrium point. Given its breadth of coverage, the book offers a valuable reference guide for all engineers and researchers interested in the potential applications of low-energy space missions.
As the first comprehensive and authoritative review of intra-seasonal variability (ISV), this multi-author work balances coverage of observation, theory and modeling and provides a single source of reference for all those interested in this important, multi-faceted natural phenomenon and its relation to major short-term climatic variations. Commencing with an overview of ISV and observations from an historical perspective, the book offers successive chapters that deal with the role of ISV in monsoon variability on the monsoon regions of South Asia, East Asia and South America, in North America, and in the oceans. The coupling between ocean and atmosphere is considered, together with the function of angular momentum and Earth rotation. Later chapters deal with modeling ISV in the atmosphere and oceans, and the connection between the Madden and Julian Oscillations, and El Nino/Southern Oscillation with short-term climate are considered.
Roger-Maurice Bonnet*Michel Blanc Originally published in the journal Space Science Reviews, Volume 137, Nos 1-4. DOI: 10. 1007/s11214-008-9418-0 (c) Springer Science+Business Media B. V. 2008 "Planetary Atmospheric Electricity" is the rst publication of its kind in the Space Science Series of ISSI. It is the result of a new and successful joint venture between ISSI and Eu- planet. Europlanet is a network of over 110 European and U. S. laboratories deeply involved in the development of planetary sciences and support to the European planetary space exp- ration programme. In 2004, the Europlanet consortium obtained support from the European Commission to strengthen the planetary science community worldwide, and to amplify the scienti c output, impact and visibility of the European space programme, essentially the - ropean Space Agency's Horizon 2000, Cosmic Vision programmes and their successors. Its presentcontractwiththeCommissionextendsfrom2005to2008,andincludes7networking activities, including discipline-based working groups covering the main areas of planetary sciences. A new contract with the Commission, presently under negotiation, will extend - roplanet's activities into the period 2009-2012. With the broad community connection made through its Discipline Working Groups and other activities, Europlanet offers an ideal base from which to identify new elds of research for planetary sciences and to stimulate coll- orative work among its member laboratories.
Paperback. This publication contains 36 papers presented at four symposia during the Thirty-first COSPAR Scientific Assembly held in Birmingham, UK during 1996. Papers reflect the following symposia themes: life science support system studies; production, processing and waste recycling in a CELSS (Controlled Ecological Life Support System); biological effects of closure and recycling in a CELSS; nutrition and productivity for bioregenerative life support; integration of bioregenerative and physical/chemical processes for space life support systems. Findings presented in this volume will be a valuable resource for CELSS researchers for many years to come. |
You may like...
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis
Paperback
(1)R382 Discovery Miles 3 820
|