Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
Climate variability in different ocean basins can impact one another, for instance the El Nino/Southern Oscillation (ENSO) in the Pacific Ocean has remote effects on other tropical oceans around the world, which in turn modulate ENSO. With chapters by eminent researchers, this book provides a comprehensive review on how interactions among the climates in different ocean basins are key contributors to global climate variability. It discusses how interbasin interactions are mediated by oceanic and atmospheric bridges and explains exciting new possibilities for enhancing climate prediction globally. The first part of the book covers essential theory and introduces the basic mechanisms for remote connection and local amplification. The second presents outstanding examples. The latter part discusses applications to cases of societal interest such as impacts on monsoon systems and expectations after climate change. This comprehensive reference is a useful resource for graduate students and researchers in the atmospheric and ocean sciences.
Radiation theory and measurements are at the core of the climate change debate. This new book describes in detail the basic physics used in the radiative transfer codes that are a key part of climate prediction models. The basic principles are extended to the atmospheres of the Earth and the other planets, illustrating the greenhouse effect and other radiation-based phenomena at work. Several chapters deal with the techniques and measurements for monitoring the Earth's radiation budget and thus tracking global change and its effects. Remote sensing instruments on satellites and the theory of remote sensing are also covered. The book is the first comprehensive new publication on atmospheric radiation in more than a decade, and the first to link the theoretical and experimental aspects of the subject to the contemporary climate problem.
This clear and accessible text describes the methods underlying short-term climate prediction at time scales of 2 weeks to a year. Although a difficult range to forecast accurately, there have been several important advances in the last ten years, most notably in understanding ocean-atmosphere interaction (El Nino for example), the release of global coverage data sets, and in prediction methods themselves. With an emphasis on the empirical approach, the text covers in detail empirical wave propagation, teleconnections, empirical orthogonal functions, and constructed analogue. It also provides a detailed description of nearly all methods used operationally in long-lead seasonal forecasts, with new examples and illustrations. The challenges of making a real time forecast are discussed, including protocol, format, and perceptions about users. Based where possible on global data sets, illustrations are not limited to the Northern Hemisphere, but include several examples from the Southern Hemisphere. Includes foreword by Professor Edward Lorenz (Massachusetts Institute of Technology).
Climate Physics is a modern subject based on a space-era understanding of the physical properties of the atmosphere and ocean, their planetary-scale history and evolution, new global measurement systems and sophisticated computer models, which collectively make quantitative studies and predictions possible. At the same time, interest in understanding the climate has received an enormous boost from the concern generated by the realization that rapid climate change, much of it forced by the relentless increase in population and industrialization, is potentially a serious threat to the quality of life on Earth. Our ability to resist and overcome any such threat depends directly on our ability to understand what physical effects are involved and to predict how trends may develop. In an introductory course like that presented here, we want to clarify the basics, topic by topic, and see how far we can get by applying relatively simple Physics to the climate problem. This provides a foundation for more advanced work, which we can identify and appreciate at this level although of course a full treatment requires more advanced books, of which there are many.
Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided, to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.
Optical instruments are routinely employed to obtain a wealth of
information about the atmosphere, including its composition,
temperature, and winds. A bewildering variety of optical
instruments have been proposed over the years, making it difficult
to decide which instrument should be chosen to make a specific
measurement. Spectral Imaging of the Atmosphere traces the
historical development of both spectral and imaging methods and
places them in a unified framework relevant to observations of the
troposphere, stratosphere, mesosphere and thermosphere. The
underlying concepts of various measurement methodologies are
presented and paired with appropriate applications. A selection of
specific spectral imaging instruments, appropriate to illustrate
each conceptual type, is described in detail.
There is hardly a field of science or engineering that does not
have some interest in light scattering by small particles. For
example, this subject is important to climatology because the
energy budget for the Earth's atmosphere is strongly affected by
scattering of solar radiation by cloud and aerosol particles, and
the whole discipline of remote sensing relies largely on analyzing
the parameters of radiation scattered by aerosols, clouds, and
precipitation. The scattering of light by spherical particles can
be easily computed using the conventional Mie theory. However, most
small solid particles encountered in natural and laboratory
conditions have nonspherical shapes. Examples are soot and mineral
aerosols, cirrus cloud particles, snow and frost crystals, ocean
hydrosols, interplanetary and cometary dust grains, and
microorganisms. It is now well known that scattering properties of
nonspherical particles can differ dramatically from those of
"equivalent" (e.g., equal-volume or equal-surface-area) spheres.
Therefore, the ability to accurately compute or measure light
scattering by nonspherical particles in order to clearly understand
the effects of particle nonsphericity on light scattering is very
important. * The first systematic and comprehensive treatment of
electromagnetic scattering by nonspherical particles and its
applications
The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthesis to illustrate our debt to the deep past and our potential for the future.
The study of exoplanetary atmospheres--that is, of planets orbiting stars beyond our solar system--may be our best hope for discovering life elsewhere in the universe. This dynamic, interdisciplinary field requires practitioners to apply knowledge from atmospheric and climate science, astronomy and astrophysics, chemistry, geology and geophysics, planetary science, and even biology. Exoplanetary Atmospheres provides an essential introduction to the theoretical foundations of this cutting-edge new science. Exoplanetary Atmospheres covers the physics of radiation, fluid dynamics, atmospheric chemistry, and atmospheric escape. It draws on simple analytical models to aid learning, and features a wealth of problem sets, some of which are open-ended. This authoritative and accessible graduate textbook uses a coherent and self-consistent set of notation and definitions throughout, and also includes appendixes containing useful formulae in thermodynamics and vector calculus as well as selected Python scripts. Exoplanetary Atmospheres prepares PhD students for research careers in the field, and is ideal for self-study as well as for use in a course setting. * The first graduate textbook on the theory of exoplanetary atmospheres* Unifies knowledge from atmospheric and climate science, astronomy and astrophysics, chemistry, planetary science, and more* Covers radiative transfer, fluid dynamics, atmospheric chemistry, and atmospheric escape* Provides simple analytical models and a wealth of problem sets* Includes appendixes on thermodynamics, vector calculus, tabulated Gibbs free energies, and Python scripts* Solutions manual (available only to professors)
Numerical Methods for Atmospheric and Oceanic Sciences caters to the needs of students of atmospheric and oceanic sciences in senior undergraduate and graduate courses as well as students of applied mathematics, mechanical and aerospace engineering. The book covers fundamental theoretical aspects of the various numerical methods that will help both students and teachers in gaining a better understanding of the effectiveness and rigour of these methods. Extensive applications of the finite difference methods used in the processes involving advection, barotropic, shallow water, baroclinic, oscillation and decay are covered in detail. Special emphasis is given to advanced numerical methods such as Semi-Lagrangian, Spectral, Finite Element and Finite Volume methods. Each chapter includes various exercises including Python codes that will enable students to develop the codes and compare the numerical solutions obtained through different numerical methods.
The Earth that sustains us today was born out of a few remarkable,
near-catastrophic revolutions, started by biological innovations
and marked by global environmental consequences. The revolutions
have certain features in common, such as an increase in the
complexity, energy utilization, and information processing
capabilities of life. This book describes these revolutions,
showing the fundamental interdependence of the evolution of life
and its non-living environment. We would not exist unless these
upheavals had led eventually to 'successful' outcomes - meaning
that after each one, at length, a new stable world emerged.
The first serious study of the likely road to independence, and the consequences, "Scottish Independence" starts with a detailed guide to the stages along the route to independence and goes on to analyze the legal, political and economic effects.
With significant advances in the field of atmospheric radiation and remote sensing in recent years, the need for an up-to-date treatment of radiation and cloud physics has become evident. This monograph addresses these advances, focusing on the physical principles and approximations required to develop specific subjects. In addition to its scientific value, the information presented here is essential for the development of better weather prediction models for medium- and long-range forecasting. It is also critical for achieving accurate retrieval of temperature and humidity profiles from satellite measurements, since new techniques for monitoring global biogeochemical changes rely on radiation theory and a precise knowledge of clouds and their role in radiative transfer.
Over the last two decades the complex network paradigm has proven to be a fruitful tool for the investigation of complex systems in many areas of science; for example, the Internet, neural networks and social networks. This book provides an overview of applications of network theory to climate variability, such as the El Nino/Southern Oscillation and the Indian Monsoon, presenting recent important results obtained with these techniques and showing their potential for further development and research. The book is aimed at researchers and graduate students in climate science. A basic background in physics and mathematics is required. Several of the methodologies presented here will also be valuable to a broader audience of those interested in network science, for example, from biomedicine, ecology and economics.
Asian Atmospheric Pollution: Sources, Characteristics and Impacts provides a concise yet comprehensive treatment of all aspects of pollution and air quality monitoring, across all of Asia. It focuses on key regions of the world and details a variety of sources, their transport mechanism, long term variability and impacts on climate at local and regional scales. It also discusses the feedback on pollutants, on different meteorological parameters like radiative forcing, fog formations, precipitation, cloud characteristics and more. Drawing upon the expertise of multiple well-known authors from different countries to underline some of these key issues, it includes sections dedicated to treatment of pollutant sources, studying of pollutants and trace gases using satellite/station based observations and models, transport mechanisms, seasonal and inter-annual variability and impact on climate, health and biosphere in general. Asian Atmospheric Pollution: Sources, Characteristics and Impacts is a useful resource for scientists and students to understand the sources and dynamics of atmospheric pollution as well as their transport from one continent to other continents, helping the atmospheric modelling community to model different scenarios of the pollution, gauge its short term and long term impacts across regional to global scales and better understand the ramifications of episodic events.
Global Change and Future Earth is derived from the work of several programs of the International Union of Geodesy and Geophysics (IUGG). It demonstrates how multi- and inter-disciplinary research outputs from the geoscience community can be applied to tackle the physical and societal impacts of climate change and contribute to the Future Earth programme of the International Council for Science. The volume brings together an international team of eminent researchers to provide authoritative reviews on the wide-ranging ramifications of climate change spanning eight key themes: planetary issues; geodetic issues; the Earth's fluid environment; regions of the Earth; urban environments; food security; and risk, safety and security; and climate change and global change. Covering the challenges faced by urban and rural areas, and in both developed and developing counties, this volume provides an important resource for a global audience of graduate students and researchers from a broad range of disciplines, as well as policy advisors and practitioners.
"The Atmosphere and Ocean" is a fully revised and updated student friendly physical introduction to the atmosphere and ocean. Now in its Third Edition, the book continues to provide students with an accessible description of the atmosphere and ocean with emphasis on their physical properties and inter-dependence. Clearly structured throughout, the book demonstrates that the atmosphere and ocean are both subject to the influence of the earth's rotation and therefore they have a common dynamical basis. The author clearly demonstrates the fundamental differences between the two environments and provides the reader with a much better understanding of the atmosphere and the ocean and an appreciation of their closest interactive relationship. There have been many developments in the field over the past ten years and this latest edition of a highly successful textbook brings together new material on the ocean-atmosphere system and climate, the observed circulation of the atmosphere and ocean and radiation in the atmosphere and ocean.Fully revised and updated 3rd Edition of student friendly physical introduction to the atmosphere and ocean. Now includes new chapters on observed circulation of the atmosphere and ocean, energy flows in the ocean atmosphere system, modeling the ocean and atmosphere, the ocean atmosphere system and climate. Well structured and written in an authoritative yet accessible style suitable for 2nd and 3rd year students taking courses in meteorology, oceanography and related Earth Sciences or as an introduction for graduate students. Emphasis placed on physical properties and inter-dependence of the ocean and climate. Part of the RMetS (Royal Meteorological Society) book series, "Advancing Weather and Climate Science"
Mounting evidence that human activities are substantially modifying the Earth's climate brings a new imperative to the study of the ocean's large-scale circulation. This textbook provides a concise but comprehensive introduction to the theory of large-scale ocean circulation, as it is currently understood and established. Students and instructors will benefit from the carefully chosen chapter-by-chapter exercises. This advanced textbook is invaluable for graduate students and researchers in the fields of oceanic, atmospheric, and climate sciences and other geophysical scientists, as well as physicists and mathematicians with a quantitative interest in the planetary fluid environment.
This book explains the chemistry that occurs in the atmospheres of Earth, the planets, and some satellites. Although written from the perspective of physical chemistry, it makes unusually strong links to the underlying physics, geology, and, on Earth, biology that determine the chemical composition of an atmosphere and its behaviour. Chemistry in the Earth's troposphere and stratosphere are explored, as are the phenomenon of airglow in the mesosphere and the properties of the ionosphere. The impacts of man's activities on, for example, the depletion of stratospheric ozone or the pollution of the urban environment are given due weight.
In Atmospheric Things Derek P. McCormack explores how atmospheres are imagined, understood, and experienced through experiments with a deceptively simple object: the balloon. Since the invention of balloon flight in the late eighteenth century, balloons have drawn crowds at fairs and expositions, inspired the visions of artists and writers, and driven technological development from meteorology to military surveillance. By foregrounding the distinctive properties of the balloon, McCormack reveals its remarkable capacity to disclose the affective and meteorological dimensions of atmospheres. Drawing together different senses of the object, the elements, and experience, McCormack uses the balloon to show how practices and technologies of envelopment allow atmospheres to be generated, made meaningful, and modified. He traces the alluring entanglement of envelopment in artistic, political, and technological projects, from the 2009 Pixar movie Up and Andy Warhol's 1966 installation Silver Clouds to the use of propaganda balloons during the Cold War and Google's experiments with delivering internet access with stratospheric balloons. In so doing, McCormack offers new ways to conceive of, sense, and value the atmospheres in which life is immersed.
An Introduction to Space Plasma Complexity considers select examples of complexity phenomena related to observed plasma processes in the space environment, such as those pertaining to the solar corona, the interplanetary medium, and Earth's magnetosphere and ionosphere. This book provides a guided tour of the ideas behind forced and/or self-organized criticality, intermittency, multifractals, and the theory of the dynamic renormalization group, with applications to space plasma complexity. There is much to be explored and studied in this relatively new and developing field. Readers will be able to apply the concepts and methodologies espoused in this introduction to their own research interests and activities.
Statistical downscaling and bias correction are becoming standard tools in climate impact studies. This book provides a comprehensive reference to widely-used approaches, and additionally covers the relevant user context and technical background, as well as a synthesis and guidelines for practitioners. It presents the main approaches including statistical downscaling, bias correction and weather generators, along with their underlying assumptions, skill and limitations. Relevant background information on user needs and observational and climate model uncertainties is complemented by concise introductions to the most important concepts in statistical and dynamical modelling. A substantial part is dedicated to the evaluation of regional climate projections and their value in different user contexts. Detailed guidelines for the application of downscaling and the use of downscaled information in practice complete the volume. Its modular approach makes the book accessible for developers and practitioners, graduate students and experienced researchers, as well as impact modellers and decision makers. |
You may like...
Computational Techniques for Modeling…
Vitaliy Prusov, Anatoliy Doroshenko
Hardcover
R5,342
Discovery Miles 53 420
The Atmosphere and Ionosphere…
Vladimir L. Bychkov, Gennady V. Golubkov, …
Hardcover
Schumann Resonance for Tyros…
Alexander Nickolaenko, Masashi Hayakawa
Hardcover
R3,445
Discovery Miles 34 450
|