![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.
New edition of a successful and comprehensive textbook on the atmospheric processes, numerical methods, and computational techniques required for advanced students and scientists to successfully study air pollution and meteorology. From reviews: ' I highly recommend the Jacobson book for graduate students and professionals engaged in atmospheric modeling. They will find themselves frequently reaching for it as a reference. I certainly do.' Daniel J. Jacob, Atmospheric Environment ' ...recommended as a text for a rigorous course of study in air pollution meteorology and modeling.' T. Warner, Applied Mechanical Review
This textbook is written for graduate students and researchers in meteorology and related sciences. While most meteorological textbooks only present equilibrium thermodynamics, this book also introduces the linear theory of non-equilibrium and provides the necessary background for more advanced studies. The authors start by introducing the equations that describe the basic laws of thermodynamics and entropy and go on to discuss the thermodynamics of blackbody radiation, thermodynamic potentials, and the constitutive equations of irreversible fluxes. Later chapters look at the state functions of ideal gases, thermodynamics of cloud air, heat equations for special adiabatic systems, atmospheric statics, stability, and atmospheric energetics of hydrostatic equilibrium. Each chapter ends with a set of exercises that are designed to help the reader develop a deeper understanding of the subject. Answers to all the exercises are given at the end of the book.
Complete with numerous exercise sets and solutions, this work is written for advanced students of meteorology and related sciences as well as professional meteorologists and researchers. The first part of the book presents the mathematical tools needed for a thorough understanding of the topics covered in the second. These topics include kinematics of the atmosphere; inertial and dynamic stability; turbulent systems; and novel weather prediction methods with potential for extending the forecasting range.
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. Various aspects of plasma physics are discussed, beginning with particle orbit theory, and including fluid equations, a variety of magnetohydrodynamic (MHD) models, wave equations and kinetic theory. The relationships between these distinct approaches are discussed. In this way, the reader gains a firm grounding in the fundamentals, leading to an understanding of some of the more specialized topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena; Exercises are included.
This book provides a comprehensive introduction to the history and science of major air pollution issues. It begins with an introduction to the basic atmospheric chemistry and the history of discovery of chemicals in the atmosphere, and then moves on to a discussion of the evolution of the earth's atmosphere, and the structure and composition of the present-day atmosphere. It also offers a comprehensive and accessible discussion of the five major atmospheric pollution topics: urban outdoor air pollution, indoor air pollution, acid deposition, stratospheric ozone reduction, and global climate change.
In the third edition of The Physics of Atmospheres, John Houghton has revised his acclaimed textbook to bring it completely up-to-date. The book provides a comprehensive concise description of the physical processes governing the structure and the circulation of the atmosphere. New chapters have been introduced on topics of strong contemporary interest such as chaos and predictability and climate change. The chapters on global observations (especially through remote sensing) and numerical modeling have also been substantially extended.
Introduction to Atmospheric Chemistry reviews in ten concise chapters the chemistry of the Earth's atmosphere and some outstanding environmental issues, including air pollution, acid rain, the ozone hole, and global change. Peter Hobbs is an eminent atmospheric science teacher, researcher, and author of several well-known textbooks. This text and his other book Basic Physical Chemistry for the Atmospheric Sciences (Second Edition, Cambridge University Press 2000) form companion volumes. The book, designed to be a primary textbook for a first university course--undergraduate or graduate--in atmospheric chemistry, will find a place in atmospheric science, meteorology, environmental science, geophysics and chemistry curricula. Special features include worked exercises and end-of-chapter student exercises with model solutions in an appendix.
Updated and revised, this highly successful text details the basic chemical principles required for modern studies of atmospheres, oceans, and Earth and planetary systems. This completely accessible introduction allows undergraduate and graduate students with little formal training in chemistry to grasp such fundamental concepts as chemical equilibria, chemical thermodynamics, chemical kinetics, solution chemistry, acid and base chemistry, oxidation-reduction reactions, and photochemistry. In the companion volume Introduction to Atmospheric Chemistry (also to be published in May 2000), Peter Hobbs details atmospheric chemistry itself, including its applications to air pollution, acid rain, the ozone hole, and climate change. Together these two books offer an ideal introduction to atmospheric chemistry for a variety of disciplines.
A fascinating journey through the atmosphere that will leave you breathless. With seven million early deaths a year linked to air pollution, air quality is headline news around the world. But how do we measure air pollution and what on earth is an odour panel? Why are property prices higher upwind of cities? Should we buy, hold on to, or avoid a diesel car? And will our grandchildren inherit an atmosphere worth breathing? From the atmosphere on distant planets to the stuff that gets into your lungs, from holes in the ozone layer to lazy and disappearing gases, air quality specialist and full-time breather Dr Mark Broomfield combines scientific evidence with personal stories and advice on what you can do to improve air quality, giving you the low-down on what's up high. ***PRAISE FOR EVERY BREATH YOU TAKE*** A NewBooks Book of the Month The Revelator, 13 Best Environmental Books of July 2019 'Written in an easily accessible style yet get across important facts about the world and what we are doing to it.' Peter Wadhams, author of A Farewell to Ice 'Not without raising a wry smile, the author takes us from the atmospheres of the planets to the air outside our front door... a fascinating read.' Professor Duncan Laxen, Associate of Air Quality Consultants 'Mark Broomfield s writing is just the breath of fresh air needed to lift the fog on atmospheric sciences.' Piers Forster, Professor of Physical Climate Change, University of Leeds
Environmental Micropollutants, the latest volume in the Advances in Environmental Pollution Research series, presents the latest research on various environmental micropollutants, as well as their impacts on health and the economy, also addressing the best possible solutions to address the risks presented by these pollutants. The book covers solutions for dusts, infectious particles, heavy metals, organophosphates, atmospheric toxic organic micropollutants, fungal spores, pollutants from E-waste, and antibiotics threats, providing researchers working in environmental science and management with key knowledge to address this increasingly important concern. These types of micropollutants can be present in water, air and soil and can harm health even in low quantities, hence this book covers the challenges these pollutants pose to the environment and human health, presenting practical solutions.
'Compelling . . . Clark's enthusiasm shines through on every page' Sunday Times 'An engaging and lively history' Financial Times __________ A thin, invisible layer of air surrounds the Earth, sustaining all known life on the planet and creating the unique climates and weather patterns that make each part of the world different. In Firmament, atmospheric scientist and science communicator Simon Clark offers a rare and accessible tour of the ins and outs of the atmosphere and how we know what we know about it. From the workings of its different layers to why carbon dioxide is special, from pioneers like Pascal to the unsung heroes working in the field to help us understand climate change, Firmament introduces us to an oft-overlooked area of science and not only lays the ground work for us to better understand the debates surrounding the climate today, but also provides a glimpse of the future that is possible with this knowledge in hand. __________
Over the last two decades the complex network paradigm has proven to be a fruitful tool for the investigation of complex systems in many areas of science; for example, the Internet, neural networks and social networks. This book provides an overview of applications of network theory to climate variability, such as the El Nino/Southern Oscillation and the Indian Monsoon, presenting recent important results obtained with these techniques and showing their potential for further development and research. The book is aimed at researchers and graduate students in climate science. A basic background in physics and mathematics is required. Several of the methodologies presented here will also be valuable to a broader audience of those interested in network science, for example, from biomedicine, ecology and economics.
The Sun is our nearest star; it is a dynamic star, which changes with time. Solar variations have significant influence on Earth's space environment and climate through the Sun's magnetic field, irradiation and energetic particles. Long-term and reliable historical datasets of solar and stellar activity indices are crucial for understanding the variations and predicting the future solar cycle. IAU Symposium 340 brings together scientists from diverse, interdisciplinary areas to address the latest discoveries from these long-term datasets for the understanding of solar and stellar magnetic cycles. They make comparisons between different datasets and discuss how to make uniform databases. The proceedings of IAU S340 contain a selection of presentations and reviews from internationally renowned experts. They provide an up-to-date account of this field of importance to researchers and advanced students in solar, stellar, space and heliospheric physics.
Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided, to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.
"The Atmosphere and Ocean" is a fully revised and updated student friendly physical introduction to the atmosphere and ocean. Now in its Third Edition, the book continues to provide students with an accessible description of the atmosphere and ocean with emphasis on their physical properties and inter-dependence. Clearly structured throughout, the book demonstrates that the atmosphere and ocean are both subject to the influence of the earth's rotation and therefore they have a common dynamical basis. The author clearly demonstrates the fundamental differences between the two environments and provides the reader with a much better understanding of the atmosphere and the ocean and an appreciation of their closest interactive relationship. There have been many developments in the field over the past ten years and this latest edition of a highly successful textbook brings together new material on the ocean-atmosphere system and climate, the observed circulation of the atmosphere and ocean and radiation in the atmosphere and ocean.Fully revised and updated 3rd Edition of student friendly physical introduction to the atmosphere and ocean. Now includes new chapters on observed circulation of the atmosphere and ocean, energy flows in the ocean atmosphere system, modeling the ocean and atmosphere, the ocean atmosphere system and climate. Well structured and written in an authoritative yet accessible style suitable for 2nd and 3rd year students taking courses in meteorology, oceanography and related Earth Sciences or as an introduction for graduate students. Emphasis placed on physical properties and inter-dependence of the ocean and climate. Part of the RMetS (Royal Meteorological Society) book series, "Advancing Weather and Climate Science"
Global Change and Future Earth is derived from the work of several programs of the International Union of Geodesy and Geophysics (IUGG). It demonstrates how multi- and inter-disciplinary research outputs from the geoscience community can be applied to tackle the physical and societal impacts of climate change and contribute to the Future Earth programme of the International Council for Science. The volume brings together an international team of eminent researchers to provide authoritative reviews on the wide-ranging ramifications of climate change spanning eight key themes: planetary issues; geodetic issues; the Earth's fluid environment; regions of the Earth; urban environments; food security; and risk, safety and security; and climate change and global change. Covering the challenges faced by urban and rural areas, and in both developed and developing counties, this volume provides an important resource for a global audience of graduate students and researchers from a broad range of disciplines, as well as policy advisors and practitioners.
Through a comprehensive collection of articles, The Oxford Encyclopedia of Climate Change Communication explores the origin and evolution of our understanding of climate change as it is presented in communication and media. Taking a multifaceted approach, the encyclopedia offers a scholarly examination of the effects of climate change communication on public opinion and policy decisions; journalistic coverage and media portrayals of climate change; communication strategies and campaigns; and the implications for effective communication, including those of outreach and advocacy efforts. Additionally, the encyclopedia reviews climate change communication research methods and approaches. Global in breadth and deeply resourced, The Oxford Encyclopedia of Climate Change Communication serves as an essential source of perspective on all aspects of this important area of scholarship. It is led by Editor in Chief Dr. Matthew C. Nisbet, along with Associate Editors Dr. Shirley S. Ho, Dr. Ezra Markowitz, Dr. Saffron O'Neill, Dr. Mike S. SchAfer, and Dr. Jagadish Thaker.
Solar activity has become of increasing importance in our modern society, as many aspects of today's technology could be affected by eruptive phenomena associated with solar magnetic variability. State of the art solar instrumentation is revealing the dynamics of the Sun with unprecedented temporal and spatial resolutions. This volume includes recent results in solar physics research presented at the IAU Symposium 327, the first IAU symposium held in Colombia, in the historical city of Cartagena de Indias, one of the oldest in the Americas. Its main scientific goal was to discuss recent results on the processes shaping the structure of the solar atmosphere and driving plasma eruptions and explosive events in our star. Researchers in both theory and observation, who study structure and activity in the solar atmosphere, discuss a wide range of topics in the field.
The first serious study of the likely road to independence, and the consequences, "Scottish Independence" starts with a detailed guide to the stages along the route to independence and goes on to analyze the legal, political and economic effects.
The international bestseller that gives you the facts about climate change When students David Nelles and Christian Serrer struggled to find a book that explained the nuts and bolts of climate change in a way that was comprehensive, concise and enjoyable to read, they decided to write it themselves. With meticulous research corroborated by over 100 scientists, Small Gases, Big Effect summarizes all the latest findings on the causes and effects of climate change. Combining clear, thoughtful writing with illuminating graphics, it is a little book that presents complex scientific evidence in a way that everyone will find easy to understand.
The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthesis to illustrate our debt to the deep past and our potential for the future.
The emphasis of Planetary Atmospheres is on comparative aspects of
planetary atmospheres, generally meaning comparison with the Earth,
including atmospheric composition, thermal structure, cloud
properties, dynamics, weather and climate, and aeronomy. The goal
is to look for common processes at work under different boundary
conditions in order to reach a fundamental understanding of the
physics of atmospheres. As part of a general Physics course, the
material is chosen to emphasise certain aspects that will be of
broad topical interest:
This classic monograph provided the first comprehensive account of the physics and chemistry of ice, and remains authoritative and relevant today. Informed by research from physicists, chemists, glaciologists, meteorologists, geophysicists, and molecular biologists, the book places emphasis on the basic physical properties of ice (electrical, optical, mechanical, and thermal), the modes of nucleation and growth of ice, and the interpretation of these phenomena in terms of molecular structure. Applied aspects of ice physics are also discussed. The book should serve both as a reference on ice physics for research workers and as a unified survey of the subject for those new to the field. |
You may like...
|