![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
This book describes the methods used to construct general circulation models of the atmosphere, and how such models perform in applications relating to the real climate and environmental systems. The author describes the fundamental dynamics of the atmospheric circulation, modelling of the general circulation, and applications of GCMs. The book consits of three parts: - Part 1 summarizes the physical processes involved, including basic equations, waves and instabilities; - Part 2 covers atmospheric structures, including various types of one- and two-dimensional structures and circulations; - Part 3 describes the basic notions for construction of general circulation models of the atmosphere and their applications. The text includes an appendix incorporating the basic data and mathematical formulae required to enable readers to construct GCMs for themselves.
Coupled Atmosphere-Ocean Dynamics of Climate Variability and Climate Change presents the patterns, mechanisms, and predictability of climate variability and anthropogenic climate change. Based on a graduate course the author has taught over 25 years, this book provides the physical foundation for those who are interested in fundamental questions such as: why climate varies from one year to another; how predictable climate is; and how climate will change in the face of increasing greenhouse gases in the atmosphere. This is the first comprehensive and systematic treatment of this subject that simultaneously draws on the latest research and is accessible for graduate students. The book takes a step-by-step systematic approach to coupled ocean-atmosphere interactions. This allows a wide range of comparative views: climate modes among and across different tropical ocean basins, ocean feedback on the atmosphere (in and out of the tropics), and spontaneous internal oscillation versus externally forced climate change. Such comparative views offer unprecedented insight into the dynamics of climate variability and predictability. This book can be used as supplementary reading for advanced undergraduate students, as coursework in climate dynamics, modeling, variability, and change, and as a reference book and research monograph for researchers in ocean, atmospheric, climate, and earth system sciences.
Planetary atmospheres is a relatively new, interdisciplinary subject that incorporates various areas of the physical and chemical sciences, including geophysics, geophysical fluid dynamics, atmospheric science, astronomy, and astrophysics. Providing a much-needed resource for this cross-disciplinary field, An Introduction to Planetary Atmospheres presents current knowledge on atmospheres and the fundamental mechanisms operating on them. The author treats the topics in a comparative manner among the different solar system bodies-what is known as comparative planetology. Based on an established course, this comprehensive text covers a panorama of solar system bodies and their relevant general properties. It explores the origin and evolution of atmospheres, along with their chemical composition and thermal structure. It also describes cloud formation and properties, mechanisms in thin and upper atmospheres, and meteorology and dynamics. Each chapter focuses on these atmospheric topics in the way classically done for the Earth's atmosphere and summarizes the most important aspects in the field. The study of planetary atmospheres is fundamental to understanding the origin of the solar system, the formation mechanisms of planets and satellites, and the day-to-day behavior and evolution of Earth's atmosphere. With many interesting real-world examples, this book offers a unified vision of the chemical and physical processes occurring in planetary atmospheres. Ancillaries are available at www.ajax.ehu.es/planetary_atmospheres/
This textbook introduces research on dinosaurs by describing the science behind how we know what we know about dinosaurs. A wide range of topics is covered, from fossils and taphonomy to dinosaur physiology, evolution, and extinction. In addition, sedimentology, paleo-tectonics, and non-dinosaurian Mesozoic life are discussed. There is a special opportunity to capitalize on the enthusiasm for dinosaurs that students bring to classrooms to foster a deeper engagement in all sciences. Students are encouraged to synthesize information, employ critical thinking, construct hypotheses, devise methods to test these hypotheses, and come to new defensible conclusions, just as paleontologists do. Key Features Clear and easy to read dinosaur text with well-defined terminology Over 600 images and diagrams to illustrate concepts and aid learning Reading objectives for each chapter section to guide conceptual learning and encourage active reading Companion website (teachingdinosaurs.com) that includes supporting materials such as in-class activities, question banks, lists of suggested specimens, and more to encourage student participation and active learning Ending each chapter with a specific "What We Don't Know" section to encourage student curiosity Related Titles Singer, R. Encyclopedia of Paleontology (ISBN 978-1-884964-96-1) Fiorillo, A. R. Alaska Dinosaurs: An Ancient Arctic World (ISBN 978-1-138-06087-6) Caldwell, M. W. The Origin of Snakes: Morphology and the Fossil Record (ISBN 978-1-4822-5134-0)
Since its discovery in early 1900, turbulence has been an interesting and complex area of study. Written by international experts, Air Pollution and Turbulence: Modeling and Applications presents advanced techniques for modeling turbulence, with a special focus on air pollution applications, including pollutant dispersion and inverse problems. The book s foreword was written by specialists in the field, including the Professor Sergej Zilitinkevich. Offering innovative atmospheric mathematical modeling methods, which can also be applied to other disciplines, the book includes:
The book provides a solid theoretical understanding of turbulence and includes cases studies that illustrate subjects related to environmental sciences and environmental modeling. It reflects and summarizes recent developments in key areas of modeling atmospheric turbulence and air pollution. It pulls together information on techniques and methods used on turbulence, air pollution, and applications. While these topics are often covered separately, this book s combined coverage of all three areas sets it apart.
Provides a thought-provoking and original approach to the science of climate. Emphasizes that there are many factors contributing to the causation of climate change. Clarifies that while anthropogenic generation of carbon dioxide is important it is only one of several human activities contributing to climate change. Considers climate change responses needed to be undertaken by politicians and society at national and global levels. Totally revised and updated with state of the art satellite data and climate models currently in operation around the globe.
Vortex Dynamics, Statistical Mechanics, and Planetary Atmospheres introduces the reader with a background in either fluid mechanics or statistical mechanics to the modeling of planetary atmospheres by barotropic and shallow-water models. These potent models are introduced in both analytical and numerical treatments highlighting the ways both approaches inform and enlighten the other. This book builds on Vorticity, Statistical Mechanics, and Monte Carlo Simulations by Lim and Nebus in providing a rare introduction to this intersection of research fields. While the book reaches the cutting edge of atmospheric models, the exposition requires little more than an undergraduate familiarity with the relevant fields of study, and so this book is well suited to individuals hoping to swiftly learn an exciting new field of study. With inspiration drawn from the atmospheres of Venus and of Jupiter, the physical relevance of the work is never far from consideration, and the bounty of results shows a new and fruitful perspective with which to study planetary atmospheres.
Vortex Dynamics, Statistical Mechanics, and Planetary Atmospheres introduces the reader with a background in either fluid mechanics or statistical mechanics to the modeling of planetary atmospheres by barotropic and shallow-water models. These potent models are introduced in both analytical and numerical treatments highlighting the ways both approaches inform and enlighten the other. This book builds on Vorticity, Statistical Mechanics, and Monte Carlo Simulations by Lim and Nebus in providing a rare introduction to this intersection of research fields. While the book reaches the cutting edge of atmospheric models, the exposition requires little more than an undergraduate familiarity with the relevant fields of study, and so this book is well suited to individuals hoping to swiftly learn an exciting new field of study. With inspiration drawn from the atmospheres of Venus and of Jupiter, the physical relevance of the work is never far from consideration, and the bounty of results shows a new and fruitful perspective with which to study planetary atmospheres.
Originally published in 1955 Atmospheric Turbulence examines dynamic meteorology and the fundamental part it plays in the overall science of meteorology. The book examines the theory of atmospheric turbulence as a more mathematically developed area than largescale motions of the atmosphere and examines its significance in economic, military and industrial spheres. The book focuses on the effect and importance of atmospheric turbulence, not only to meteorologists, but the designers of large aircraft. The book addresses the effects of turbulence and the properties of the atmosphere that can be found closer to the ground. This book will be of interest to atmospheric physicists and meteorologists.
The GOES-R Series: A New Generation of Geostationary Environmental Satellites introduces the reader to the most significant advance in weather technology in a generation. The world's new constellation of geostationary operational environmental satellites (GOES) are in the midst of a drastic revolution with their greatly improved capabilities that provide orders of magnitude improvements in spatial, temporal and spectral resolution. Never before have routine observations been possible over such a wide area. Imagine satellite images over the full disk every 10 or 15 minutes and monitoring of severe storms, cyclones, fires and volcanic eruptions on the scale of minutes.
Originally published in 1990 Tropical Resources presents in-depth coverage of the extremely diverse tropical environments, the resources to be found within the region and their production, and ecological management. The book discusses economic geography and ways of utilizing available resources, including those of tropical forests, wildlife, tidal wetlands and the sea. The book also include chapters on the development and land use of protected areas, the ecological aspects of pasture resources; and the impacts of economic development and population damage. In addition, studies are offered on tropical soils, including their distribution properties and management and the ecological processes at work in tropical forests. For geographers, economists and policymakers, the book provides a wealth of information on tropical resources and their potential development.
Originally published in 2000, The Arctic provides a comprehensive overview of the region's rapidly changing physical and human dimensions, and demonstrates the importance of communication between natural scientists, social scientists, and local stakeholders in response to the tremendous challenges and opportunities facing the Arctic. It is an essential resource for all Arctic researchers, particularly those developing multidisciplinary projects. It provides an overview of key areas of Arctic research by renowned specialists in the field, and each chapter forms a detailed, varied and accessible account of current knowledge. Each author introduces the subject to a specialist readership, while retaining intellectual integrity and relevance for specialists. Overall, the richness of the material presented in this volume reflects the ecological and cultural diversity of this vast and environmentally critical part of the globe.
Originally published in 1988 Deforestation examines deforestation as a major environmental and development problem. It examines the issues of forests being cut in tropical and mountain areas, and how acid rain, pollution and disease wreak havoc in temperate zones. Some of the worst effects of deforestation have been changes in the world's climate system, erosion and flooding, desertification, wood short-ages and the disappearance of some floral and fauna species. This book challenges the belief that deforestation is due to entirely rapid population growth and agricultural expansion and emphasises the effects of commercial exploitation and poor planning and management. In concludes with a programme for reforestation using agro-forestry, appropriate cottage industries, improved international programmes, local land reforms and community participation.
Originally published in 1975 Terrestrial Environments covers the zoogeography and ecology of the main terrestrial environments of the world, including fresh water habitats with emphasis on their fauna. The book also explores climate and vegetation in so far as they affect animal life. Finally, the selective influence of the environment on its fauna is discussed and, conversely, the influence of regulation, a synthesis of these interrelations. Morphological adaptations of the animals inhabiting various types of terrestrial environments are considered in relation to locomotion, feeding, and escape from enemies. Physiological adaptations are also mentioned briefly, and the adaptative importunate of diurnal and seasonal rhythms is stressed.
Originally published in 1982, Biogeographical Processes is a concise introduction to biogeography aimed at undergraduate students. It provides a detailed overview of man and his environment and includes data from such research projects as that of the International Biological Programme. The book argues that natural processes can be viewed as a datum line to which the human impact through time is added. It suggests that through this datum line, the man and the biological environment are inextricably linked. The book firstly examines the fundamental processes determining the distribution of plants and animals, and the interactions between such processes leading to the concept of the ecosystem. The book also examines major world ecosystems, or biomes, such as forests, grasslands and oceans as if they were in a natural condition and discusses the affect of human impact upon such systems. The book also discusses the alternative future relationships of man and other living organisms. Although over 30 years old, the book still contains a useful and detailed overview of biogeography. It will be of interest to students or lecturers in ecology, biology and the environmental sciences.
Remote sounding of the atmosphere has proved to be a fruitful method of obtaining global information about the atmospheres of the earth and other planets. This book treats comprehensively the inverse problem of remote sounding, and discusses a wide range of retrieval methods for extracting atmospheric parameters of interest from the quantities (thermal emission, for example) that can be measured remotely. Inverse theory is treated in depth from an estimation-theory point of view, but practical questions are also emphasized, such as designing observing systems to obtain the maximum quantity of information, efficient numerical implementation of algorithms for processing large quantities of data, error analysis and approaches to the validation of the resulting retrievals. The book is targeted at graduate students as well as scientists.
There is hardly a field of science or engineering that does not
have some interest in light scattering by small particles. For
example, this subject is important to climatology because the
energy budget for the Earth's atmosphere is strongly affected by
scattering of solar radiation by cloud and aerosol particles, and
the whole discipline of remote sensing relies largely on analyzing
the parameters of radiation scattered by aerosols, clouds, and
precipitation. The scattering of light by spherical particles can
be easily computed using the conventional Mie theory. However, most
small solid particles encountered in natural and laboratory
conditions have nonspherical shapes. Examples are soot and mineral
aerosols, cirrus cloud particles, snow and frost crystals, ocean
hydrosols, interplanetary and cometary dust grains, and
microorganisms. It is now well known that scattering properties of
nonspherical particles can differ dramatically from those of
"equivalent" (e.g., equal-volume or equal-surface-area) spheres.
Therefore, the ability to accurately compute or measure light
scattering by nonspherical particles in order to clearly understand
the effects of particle nonsphericity on light scattering is very
important. * The first systematic and comprehensive treatment of
electromagnetic scattering by nonspherical particles and its
applications
Asian Atmospheric Pollution: Sources, Characteristics and Impacts provides a concise yet comprehensive treatment of all aspects of pollution and air quality monitoring, across all of Asia. It focuses on key regions of the world and details a variety of sources, their transport mechanism, long term variability and impacts on climate at local and regional scales. It also discusses the feedback on pollutants, on different meteorological parameters like radiative forcing, fog formations, precipitation, cloud characteristics and more. Drawing upon the expertise of multiple well-known authors from different countries to underline some of these key issues, it includes sections dedicated to treatment of pollutant sources, studying of pollutants and trace gases using satellite/station based observations and models, transport mechanisms, seasonal and inter-annual variability and impact on climate, health and biosphere in general. Asian Atmospheric Pollution: Sources, Characteristics and Impacts is a useful resource for scientists and students to understand the sources and dynamics of atmospheric pollution as well as their transport from one continent to other continents, helping the atmospheric modelling community to model different scenarios of the pollution, gauge its short term and long term impacts across regional to global scales and better understand the ramifications of episodic events.
These proceedings are based upon the review lectures, the re search talks and the accompanying discussion from the NATO Advanced Study Institute on "The Dynamical and Chemical Coupling of the Neutral and Ionized Atmosphere" held at Spatind, Norway April 12-22, 1977. In recent years, in spite of the many subdivisions of atmospher ic physics it has become clear that a complete understanding of the subject matter requires an interdisciplinary effort of the scien tists working on a variety of atmospheric phenomena. This Advanced Study Institute was organized in order to meet this demand. A number of eminent scientists were invited to review the major subfields in atmospheric physics and expose the areas where the coupling between the neutral and ionized atmosphere is evident. These review papers were supported by current research results. However, the material covered here is by no means complete con sidering the range of subject matter covered by the title. The re sponsibility for this inadequacy lies with the editors and the pro gram committee, rather than with the individual contributors. Oslo, June 1977. B. Grandal J.A. Holtet. PARTICIPANTS Max-Planck-Institute for Nuclear Physics Arnold, F. P.O.Box 1248, D-0069 Heidelberg F.R.G. Bj centsrn, L. Uppsala Ionospheric Observatory S-755 90 Uppsala Sweden The Institute for Mathematical and Physical Brekke, A."
How did electrons in the high atmosphere and space around the Earth
come to acquire their speeds and energies?
'Dynamic Meteorology: A Basic Course' is an introduction to the physics of the atmosphere. Starting from the basics, it provides students with an awareness of simple mathematics and enthusiastically proceeds to provide a thorough grounding in the fundamentals of meteorology. The authors lead students to a scientifically rigorous understanding of the behaviour of weather systems such as highs, lows, fronts, jet streams and tropical cyclones. From the 'ABC' of the laws of Avogrado, Boyle and Charles to the powerful omega equation and beyond, this is a simple exposition of dynamic meteorology. Why does the wind blow along the lines of isobars rather than across them? Why are low pressure systems on the weather map more intense than high-pressure systems? Why is there much less constraint on the strength of the wind around a cyclone than an anticyclone? An international team of academic experts in meteorology answer these and many other fundamental questions with simple mathematical equations. Covering both northern and southern hemispheres, 'Dynamic Meteorology' equips students of earth and environmental sciences with proper understanding of the essential mathematics necessary to unlock the mysteries of the natural world.
The Advanced Research Workshop entitled "Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the At- sphere" was held in Abbaye de Fontevraud, France, from April 29 to May 3, 2002. The meeting involved 40 researchers from 14 countries. The goal of this meeting was to address a problem that the scienti?c community is aware of for many years. Up now, however, the so- tion for this problem is far from satisfactory. Pair e?ects are called unconventional in the title of this meeting. In speci?c spectral domains and/or geophysical conditions they are recognized to play a dominant role in the absorption/emission properties of the atmosphere. Water vapor continuum absorption is among the most prominent examples. Permanently improving accuracy of both laboratory studies and ?eld observations requires better knowledge of the spectroscopic features - tributable to molecular pairs which may form at equilibrium. The Workshop was targeted both to clarify the pending questions and, as far as feasible, to trace the path to possible answers since the underlying phenomena are yet incompletely understood and since a reliable theory is often not available. On the other hand, the lack of precise laboratory data on bimolecular absorption is often precluding the construction of reliable theoretical models. Ideally, the knowledge accumulated in the course of laboratory studies should correlate with the practical demands from those who are carrying out atmospheric ?eld measurements and space observations.
Now in its second edition,Climatology continues to provide an up-to-date stimulating and comprehensive guide to the nature of the earth's climate. It presents a synthesis of contemporary scientific ideas about atmospheric circulation. Topics covered include: -Energy systems-The hydrological cycle-General circulation, local and regional climate-Application of climate information-Use of satellite observations
"[An] approachable exploration of the jet stream ... The reader is rewarded with plenty of juicy little facts ... a good and surprisingly enjoyable trip around a weather phenomenon." - Brian Clegg, Popular Science A number of extreme weather events have struck the Northern Hemisphere in recent years, from scorching heatwaves to desperately cold winters, and from floods and storms to droughts and wildfires. These events have fuelled intense discussions in scientific conferences, government agencies, cafes, and on street corners around the world. Why are these events happening? Is this the emerging signal of climate change, and should we expect more of this? Media reports vary widely, but one mysterious agent has risen to prominence in many cases: the jet stream. The story begins on a windswept beach in Barbados, from where we follow the ascent of a weather balloon that will travel along the jet stream all around the world. From this viewpoint we observe the effect of the jet in influencing human life around the hemisphere, and witness startling changes emerging. What is the jet stream and how well do we understand it? How does it affect our weather and is it changing? These are the main questions tackled in this book. We learn about how our view of the wind has developed from Aristotle's early theories up to today's understanding. We see that the jet is intimately connected with dramatic contrasts between climate zones and has played a key historical role in determining patterns of trade. We learn about the basic physics underlying the jet and how this knowledge is incorporated into computer models which predict both tomorrow's weather and the climate of future decades. And finally, we discuss how climate change is expected to affect the jet, and introduce the vital scientific debate over whether these changes have contributed to recent extreme weather events.
Advances in Spectroscopic Monitoring of the Atmosphere provides a comprehensive overview of cutting-edge technologies and monitoring applications. Concepts are illustrated by numerous examples with information on spectroscopic techniques and applications widely distributed throughout the text. This information is important for researchers to gain an overview of recent developments in the field and make informed selections among the most suitable techniques. This volume also provides information that will allow researchers to explore implementing and developing new diagnostic tools or new approaches for trace gas and aerosol sensing themselves. Advances in Spectroscopic Monitoring of the Atmosphere covers advanced and newly emerging spectroscopic techniques for optical metrology of gases and particles in the atmosphere. This book will be a valuable reference for atmospheric scientists, including those whose focus is applying the methods to atmospheric studies, and those who develop instrumentation. It will also serve as a useful introduction to researchers entering the field and provide relevant examples to researchers and students developing and applying optical sensors for a variety of other scientific, technical, and industrial uses. |
You may like...
|