![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
Provides a thought-provoking and original approach to the science of climate. Emphasizes that there are many factors contributing to the causation of climate change. Clarifies that while anthropogenic generation of carbon dioxide is important it is only one of several human activities contributing to climate change. Considers climate change responses needed to be undertaken by politicians and society at national and global levels. Totally revised and updated with state of the art satellite data and climate models currently in operation around the globe.
Originally published in 1955 Atmospheric Turbulence examines dynamic meteorology and the fundamental part it plays in the overall science of meteorology. The book examines the theory of atmospheric turbulence as a more mathematically developed area than largescale motions of the atmosphere and examines its significance in economic, military and industrial spheres. The book focuses on the effect and importance of atmospheric turbulence, not only to meteorologists, but the designers of large aircraft. The book addresses the effects of turbulence and the properties of the atmosphere that can be found closer to the ground. This book will be of interest to atmospheric physicists and meteorologists.
Planetary atmospheres is a relatively new, interdisciplinary subject that incorporates various areas of the physical and chemical sciences, including geophysics, geophysical fluid dynamics, atmospheric science, astronomy, and astrophysics. Providing a much-needed resource for this cross-disciplinary field, An Introduction to Planetary Atmospheres presents current knowledge on atmospheres and the fundamental mechanisms operating on them. The author treats the topics in a comparative manner among the different solar system bodies-what is known as comparative planetology. Based on an established course, this comprehensive text covers a panorama of solar system bodies and their relevant general properties. It explores the origin and evolution of atmospheres, along with their chemical composition and thermal structure. It also describes cloud formation and properties, mechanisms in thin and upper atmospheres, and meteorology and dynamics. Each chapter focuses on these atmospheric topics in the way classically done for the Earth's atmosphere and summarizes the most important aspects in the field. The study of planetary atmospheres is fundamental to understanding the origin of the solar system, the formation mechanisms of planets and satellites, and the day-to-day behavior and evolution of Earth's atmosphere. With many interesting real-world examples, this book offers a unified vision of the chemical and physical processes occurring in planetary atmospheres. Ancillaries are available at www.ajax.ehu.es/planetary_atmospheres/
This textbook introduces research on dinosaurs by describing the science behind how we know what we know about dinosaurs. A wide range of topics is covered, from fossils and taphonomy to dinosaur physiology, evolution, and extinction. In addition, sedimentology, paleo-tectonics, and non-dinosaurian Mesozoic life are discussed. There is a special opportunity to capitalize on the enthusiasm for dinosaurs that students bring to classrooms to foster a deeper engagement in all sciences. Students are encouraged to synthesize information, employ critical thinking, construct hypotheses, devise methods to test these hypotheses, and come to new defensible conclusions, just as paleontologists do. Key Features Clear and easy to read dinosaur text with well-defined terminology Over 600 images and diagrams to illustrate concepts and aid learning Reading objectives for each chapter section to guide conceptual learning and encourage active reading Companion website (teachingdinosaurs.com) that includes supporting materials such as in-class activities, question banks, lists of suggested specimens, and more to encourage student participation and active learning Ending each chapter with a specific "What We Don't Know" section to encourage student curiosity Related Titles Singer, R. Encyclopedia of Paleontology (ISBN 978-1-884964-96-1) Fiorillo, A. R. Alaska Dinosaurs: An Ancient Arctic World (ISBN 978-1-138-06087-6) Caldwell, M. W. The Origin of Snakes: Morphology and the Fossil Record (ISBN 978-1-4822-5134-0)
Coupled Atmosphere-Ocean Dynamics of Climate Variability and Climate Change presents the patterns, mechanisms, and predictability of climate variability and anthropogenic climate change. Based on a graduate course the author has taught over 25 years, this book provides the physical foundation for those who are interested in fundamental questions such as: why climate varies from one year to another; how predictable climate is; and how climate will change in the face of increasing greenhouse gases in the atmosphere. This is the first comprehensive and systematic treatment of this subject that simultaneously draws on the latest research and is accessible for graduate students. The book takes a step-by-step systematic approach to coupled ocean-atmosphere interactions. This allows a wide range of comparative views: climate modes among and across different tropical ocean basins, ocean feedback on the atmosphere (in and out of the tropics), and spontaneous internal oscillation versus externally forced climate change. Such comparative views offer unprecedented insight into the dynamics of climate variability and predictability. This book can be used as supplementary reading for advanced undergraduate students, as coursework in climate dynamics, modeling, variability, and change, and as a reference book and research monograph for researchers in ocean, atmospheric, climate, and earth system sciences.
Originally published in 1988 Deforestation examines deforestation as a major environmental and development problem. It examines the issues of forests being cut in tropical and mountain areas, and how acid rain, pollution and disease wreak havoc in temperate zones. Some of the worst effects of deforestation have been changes in the world's climate system, erosion and flooding, desertification, wood short-ages and the disappearance of some floral and fauna species. This book challenges the belief that deforestation is due to entirely rapid population growth and agricultural expansion and emphasises the effects of commercial exploitation and poor planning and management. In concludes with a programme for reforestation using agro-forestry, appropriate cottage industries, improved international programmes, local land reforms and community participation.
Originally published in 1990 Tropical Resources presents in-depth coverage of the extremely diverse tropical environments, the resources to be found within the region and their production, and ecological management. The book discusses economic geography and ways of utilizing available resources, including those of tropical forests, wildlife, tidal wetlands and the sea. The book also include chapters on the development and land use of protected areas, the ecological aspects of pasture resources; and the impacts of economic development and population damage. In addition, studies are offered on tropical soils, including their distribution properties and management and the ecological processes at work in tropical forests. For geographers, economists and policymakers, the book provides a wealth of information on tropical resources and their potential development.
Originally published in 2000, The Arctic provides a comprehensive overview of the region's rapidly changing physical and human dimensions, and demonstrates the importance of communication between natural scientists, social scientists, and local stakeholders in response to the tremendous challenges and opportunities facing the Arctic. It is an essential resource for all Arctic researchers, particularly those developing multidisciplinary projects. It provides an overview of key areas of Arctic research by renowned specialists in the field, and each chapter forms a detailed, varied and accessible account of current knowledge. Each author introduces the subject to a specialist readership, while retaining intellectual integrity and relevance for specialists. Overall, the richness of the material presented in this volume reflects the ecological and cultural diversity of this vast and environmentally critical part of the globe.
Originally published in 1982, Biogeographical Processes is a concise introduction to biogeography aimed at undergraduate students. It provides a detailed overview of man and his environment and includes data from such research projects as that of the International Biological Programme. The book argues that natural processes can be viewed as a datum line to which the human impact through time is added. It suggests that through this datum line, the man and the biological environment are inextricably linked. The book firstly examines the fundamental processes determining the distribution of plants and animals, and the interactions between such processes leading to the concept of the ecosystem. The book also examines major world ecosystems, or biomes, such as forests, grasslands and oceans as if they were in a natural condition and discusses the affect of human impact upon such systems. The book also discusses the alternative future relationships of man and other living organisms. Although over 30 years old, the book still contains a useful and detailed overview of biogeography. It will be of interest to students or lecturers in ecology, biology and the environmental sciences.
Originally published in 1981 Historical Plant Geography is an introductory treatment of historical plant geography and stresses the basic theoretical frame of the subject. The book is about neither the study of vegetation nor the concept of the ecosystem, instead focusing on the much older tradition concerned with analysing the geographical distribution of individual species and natural plant groups. Important areas are discussed, such as global plate tectonics and sea-floor spreading, plant maps are introduced and there is a basic treatment of recent advances in plant taxonomy. The book will appeal to students and academics of geography, botany, ecology and environmental sciences.
Originally published in 1984, Themes in Biogeography presents a broad examination of biogeographical themes, extending across the field of plant and animal ecology and geography. The book provides a detailed and unique investigation into life and its environment and delves into not just geography, and ecology, but provides an interdisciplinary look at these areas across both biological and environmental sciences. The book examines biogeographical themes applying them to areas of research in soils and climate change, as well as in depth studies of plant communities and their animal associates. The book also discusses plants and animals through their taxonomic distribution, and deals with factors of plant geography, using both global and regional examples. This book will be of interest to biologists, ecologists and geographers alike.
Originally published in 1990, The Biogeography of the British Isles is devoted to the biogeography of the British Isles and surrounding shelf seas. Bringing together a wealth of diverse information, it is thoroughly referenced and well illustrated, and will be invaluable to students of geography, environmental science, ecology, botany, and zoology. The book traces the development of British biogeography over the last two centuries, examining key topics such as ecosystems, habitats, and niches in the context of plant and animal distribution. The book gives a detailed account of the development of biogeographical mapping and recording systems, and describes modern-day distributions, both in the countryside and in urban areas against the backcloth of human activities.
Originally published in 1975 Terrestrial Environments covers the zoogeography and ecology of the main terrestrial environments of the world, including fresh water habitats with emphasis on their fauna. The book also explores climate and vegetation in so far as they affect animal life. Finally, the selective influence of the environment on its fauna is discussed and, conversely, the influence of regulation, a synthesis of these interrelations. Morphological adaptations of the animals inhabiting various types of terrestrial environments are considered in relation to locomotion, feeding, and escape from enemies. Physiological adaptations are also mentioned briefly, and the adaptative importunate of diurnal and seasonal rhythms is stressed.
The GOES-R Series: A New Generation of Geostationary Environmental Satellites introduces the reader to the most significant advance in weather technology in a generation. The world's new constellation of geostationary operational environmental satellites (GOES) are in the midst of a drastic revolution with their greatly improved capabilities that provide orders of magnitude improvements in spatial, temporal and spectral resolution. Never before have routine observations been possible over such a wide area. Imagine satellite images over the full disk every 10 or 15 minutes and monitoring of severe storms, cyclones, fires and volcanic eruptions on the scale of minutes.
Optical instruments are routinely employed to obtain a wealth of
information about the atmosphere, including its composition,
temperature, and winds. A bewildering variety of optical
instruments have been proposed over the years, making it difficult
to decide which instrument should be chosen to make a specific
measurement. Spectral Imaging of the Atmosphere traces the
historical development of both spectral and imaging methods and
places them in a unified framework relevant to observations of the
troposphere, stratosphere, mesosphere and thermosphere. The
underlying concepts of various measurement methodologies are
presented and paired with appropriate applications. A selection of
specific spectral imaging instruments, appropriate to illustrate
each conceptual type, is described in detail.
There is hardly a field of science or engineering that does not
have some interest in light scattering by small particles. For
example, this subject is important to climatology because the
energy budget for the Earth's atmosphere is strongly affected by
scattering of solar radiation by cloud and aerosol particles, and
the whole discipline of remote sensing relies largely on analyzing
the parameters of radiation scattered by aerosols, clouds, and
precipitation. The scattering of light by spherical particles can
be easily computed using the conventional Mie theory. However, most
small solid particles encountered in natural and laboratory
conditions have nonspherical shapes. Examples are soot and mineral
aerosols, cirrus cloud particles, snow and frost crystals, ocean
hydrosols, interplanetary and cometary dust grains, and
microorganisms. It is now well known that scattering properties of
nonspherical particles can differ dramatically from those of
"equivalent" (e.g., equal-volume or equal-surface-area) spheres.
Therefore, the ability to accurately compute or measure light
scattering by nonspherical particles in order to clearly understand
the effects of particle nonsphericity on light scattering is very
important. * The first systematic and comprehensive treatment of
electromagnetic scattering by nonspherical particles and its
applications
'Dynamic Meteorology: A Basic Course' is an introduction to the physics of the atmosphere. Starting from the basics, it provides students with an awareness of simple mathematics and enthusiastically proceeds to provide a thorough grounding in the fundamentals of meteorology. The authors lead students to a scientifically rigorous understanding of the behaviour of weather systems such as highs, lows, fronts, jet streams and tropical cyclones. From the 'ABC' of the laws of Avogrado, Boyle and Charles to the powerful omega equation and beyond, this is a simple exposition of dynamic meteorology. Why does the wind blow along the lines of isobars rather than across them? Why are low pressure systems on the weather map more intense than high-pressure systems? Why is there much less constraint on the strength of the wind around a cyclone than an anticyclone? An international team of academic experts in meteorology answer these and many other fundamental questions with simple mathematical equations. Covering both northern and southern hemispheres, 'Dynamic Meteorology' equips students of earth and environmental sciences with proper understanding of the essential mathematics necessary to unlock the mysteries of the natural world.
Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided, to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.
This companion provides a collection of frequently needed numerical data as a convenient desk-top or pocket reference for atmospheric scientists as well as a concise source of information for others interested in this matter. The material contained in this book was extracted from the recent and the past scientific literature; it covers essentially all aspects of atmospheric chemistry. The data are presented primarily in the form of annotated tables while any explanatory text is kept to a minimum. In this condensed form of presentation, the volume may serve also as a supplement to many textbooks used in teaching the subject at various universities. Peter Warneck, a physical chemist specializing in atmospheric chemistry, received the diploma in 1954 and the doctorate in 1956 at the university in Bonn, Germany. In 1959, following several postdoctoral assignments, he joined the GCA Corporation in Bedford, Massachusetts, where he explored elementary processes in the atmospheres of the earth and other planets. He returned to Germany in 1970 to head the chemical kinetics group in the Air Chemistry Division of the Max-Planck-Institute for Chemistry in Mainz. In 1974 he also became professor of physical chemistry at the university in Mainz. In 1991, following German reunification, Warneck was appointed the founding director of the new Institute for Tropospheric Research in Leipzig. He served in this position parallel to his activities in Mainz until official retirement. Warneck s research included laboratory studies of chemical mechanisms and photochemistry as well as the development of analytical techniques for field measurements. Since 1990, his interests are focused on chemical reactions in clouds. Jonathan Williams is an atmospheric chemist. He received his BSc in Chemistry and French and his Ph.D. in Environmental Science from the University of East Anglia, England. Between 1995-1997 he worked as a postdoctoral researcher at the NOAA Aeronomy laboratory in Boulder, USA, and from 1998 to present as a member of staff at the Max Planck Institute for Chemistry, Mainz, Germany. He has participated in many international field measurement campaigns on aircraft, ships and at ground stations. Dr Williams is currently an editor on three atmospheric chemistry journals. His present research involves investigating the chemistry of reactive organic species in the atmosphere, in particular over forested ecosystems and in the marine boundary layer. Dr Williams leads a research group focussed specifically on Volatile Organic Compounds (VOC) at the Max Planck Institute and in 2008 he was made an honorary Reader at the University of East Anglia, UK."
Remote sounding of the atmosphere has proved to be a fruitful method of obtaining global information about the atmospheres of the earth and other planets. This book treats comprehensively the inverse problem of remote sounding, and discusses a wide range of retrieval methods for extracting atmospheric parameters of interest from the quantities (thermal emission, for example) that can be measured remotely. Inverse theory is treated in depth from an estimation-theory point of view, but practical questions are also emphasized, such as designing observing systems to obtain the maximum quantity of information, efficient numerical implementation of algorithms for processing large quantities of data, error analysis and approaches to the validation of the resulting retrievals. The book is targeted at graduate students as well as scientists.
Now in its second edition,Climatology continues to provide an up-to-date stimulating and comprehensive guide to the nature of the earth's climate. It presents a synthesis of contemporary scientific ideas about atmospheric circulation. Topics covered include: -Energy systems-The hydrological cycle-General circulation, local and regional climate-Application of climate information-Use of satellite observations
The Advanced Research Workshop entitled "Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the At- sphere" was held in Abbaye de Fontevraud, France, from April 29 to May 3, 2002. The meeting involved 40 researchers from 14 countries. The goal of this meeting was to address a problem that the scienti?c community is aware of for many years. Up now, however, the so- tion for this problem is far from satisfactory. Pair e?ects are called unconventional in the title of this meeting. In speci?c spectral domains and/or geophysical conditions they are recognized to play a dominant role in the absorption/emission properties of the atmosphere. Water vapor continuum absorption is among the most prominent examples. Permanently improving accuracy of both laboratory studies and ?eld observations requires better knowledge of the spectroscopic features - tributable to molecular pairs which may form at equilibrium. The Workshop was targeted both to clarify the pending questions and, as far as feasible, to trace the path to possible answers since the underlying phenomena are yet incompletely understood and since a reliable theory is often not available. On the other hand, the lack of precise laboratory data on bimolecular absorption is often precluding the construction of reliable theoretical models. Ideally, the knowledge accumulated in the course of laboratory studies should correlate with the practical demands from those who are carrying out atmospheric ?eld measurements and space observations.
Global Warming: The Hard Science presents a comprehensive, qualitatively rigorous, and critical discussion of the science underlying the global warming issue. The major processes in the climate system needed to understand projected human-induced climatic change are presented in detail. Observational systems used to monitor changes in the climate system and the ways in which the raw data are analyzed in order to produce estimates of current trends are also critically reviewed. The author discusses the hierarchy of computer models used to project changes in the carbon cycle, in climate, and in sea level and examines the physical principles underlying the greenhouse effect and projected warming. The text also presents a detailed discussion of the carbon cycle, of climate sensitivity, and of projected patterns of climatic change through time. Sea level rise and issues of risk and potential surprises are also critically assessed. Emphasis is placed throughout on developing an intuitive understanding of those results that do not depend on the details of any one computer simulation model. A series of boxes illustrate the key points through step-by-step calculations.
Providing a comprehensive review of our understanding of the small, high latitude weather systems known as polar lows, Erik Rasmussen and John Turner describe the climatological distribution of these depressions. They cover observational investigations into their structure, the operational forecasting of polar lows and the theoretical research into why they develop. They also discuss the experiments that reveal that some polar lows can be predicted. This book is of value to researchers and professional weather forecasters concerned with polar regions.
Advances in Spectroscopic Monitoring of the Atmosphere provides a comprehensive overview of cutting-edge technologies and monitoring applications. Concepts are illustrated by numerous examples with information on spectroscopic techniques and applications widely distributed throughout the text. This information is important for researchers to gain an overview of recent developments in the field and make informed selections among the most suitable techniques. This volume also provides information that will allow researchers to explore implementing and developing new diagnostic tools or new approaches for trace gas and aerosol sensing themselves. Advances in Spectroscopic Monitoring of the Atmosphere covers advanced and newly emerging spectroscopic techniques for optical metrology of gases and particles in the atmosphere. This book will be a valuable reference for atmospheric scientists, including those whose focus is applying the methods to atmospheric studies, and those who develop instrumentation. It will also serve as a useful introduction to researchers entering the field and provide relevant examples to researchers and students developing and applying optical sensors for a variety of other scientific, technical, and industrial uses. |
![]() ![]() You may like...
Anomaly Detection Principles and…
Kishan G. Mehrotra, Chilukuri K. Mohan, …
Hardcover
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,626
Discovery Miles 56 260
Exploring Silence and Absence in…
Melani Schroter, Charlotte Taylor
Hardcover
R3,407
Discovery Miles 34 070
|