![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
The book presents a collection of articles devoted to atmospheric and ionospheric science reported during the Conference "Atmosphere, Ionosphere, Safety" held in Kaliningrad, Russia in July 2010. It consists of reviews devoted to physics of elementary processes, aerosols, ionosphere dynamics, microwave discharges and plasmoids. Such a wide range of topics presents a comprehensive analysis of this atmospheric science including trends and questions which exist to be solved.
The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.
The Earth's atmosphere is often portrayed as a thin and finite blanket covering our planet, separate from the emptiness of outer space. In reality, the transition is gradual and a tiny fraction of the atmophere gases is still present at the altitude of low orbiting satellites. The very high velocities of these satellites ensure that their orbital motion can still be considerably affected by air density and wind. This influence can be measured using accelerometers and satellite tracking techniques. The opening chapters of this thesis provide an excellent introduction to the various disciplines that are involved in the interpretation of these observations: orbital mechanics, satellite aerodynamics and upper atmospheric physics. A subsequent chapter, at the heart of this work, covers advances in the algorithms used for processing satellite accelerometry and Two-Line Element (TLE) orbit data. The closing chapters provide an elaborate analysis of the resulting density and wind products, which are generating many opportunities for further research, to improve the modelling and understanding of the thermosphere system and its interactions with the lower atmosphere, the ionosphere-magnetosphere system and the Sun.
The text of the Persian poet Rum - - ?, written some eight centuries ago, and reproduced at the beginning of this book is still relevant to many of our pursuits of knowledge, not least of turbulence. The text illustrates the inability people have in seeing the whole thing, the 'big picture'. Everybody looks into the problem from his/her vi- point, and that leads to disagreement and controversy. If we could see the whole thing, our understanding would become complete and there would be no cont- versy. The turbulent motion of the atmosphere and oceans, at the heart of the observed general circulation, is undoubtedly very complex and dif?cult to understand in its entirety. Even 'bare' turbulence, without rotation and strati?cation whose effects are paramount in the atmosphere and oceans, still poses great fundamental ch- lenges for understanding after a century of research. Rotating strati?ed turbulence is a relatively new research topic. It is also far richer, exhibiting a host of distinct wave types interacting in a complicated and often subtle way with long-lived - herent structures such as jets or currents and vortices. All of this is tied together by basic ?uid-dynamical nonlinearity, and this gives rise to a multitude of phen- ena: spontaneous wave emission, wave-induced transport, both direct and inverse energy scale cascades, lateral and vertical anisotropy, fronts and transport barriers, anomalous transport in coherent vortices, and a very wide range of dynamical and thermodynamical instabilities.
A fascinating journey through the atmosphere that will leave you breathless. With seven million early deaths a year linked to air pollution, air quality is headline news around the world. But how do we measure air pollution and what on earth is an odour panel? Why are property prices higher upwind of cities? Should we buy, hold on to, or avoid a diesel car? And will our grandchildren inherit an atmosphere worth breathing? From the atmosphere on distant planets to the stuff that gets into your lungs, from holes in the ozone layer to lazy and disappearing gases, air quality specialist and full-time breather Dr Mark Broomfield combines scientific evidence with personal stories and advice on what you can do to improve air quality, giving you the low-down on what's up high. ***PRAISE FOR EVERY BREATH YOU TAKE*** A NewBooks Book of the Month The Revelator, 13 Best Environmental Books of July 2019 'Written in an easily accessible style yet get across important facts about the world and what we are doing to it.' Peter Wadhams, author of A Farewell to Ice 'Not without raising a wry smile, the author takes us from the atmospheres of the planets to the air outside our front door... a fascinating read.' Professor Duncan Laxen, Associate of Air Quality Consultants 'Mark Broomfield s writing is just the breath of fresh air needed to lift the fog on atmospheric sciences.' Piers Forster, Professor of Physical Climate Change, University of Leeds
The Legacy of Carbon Dioxide: Past and Present Impacts covers the truly varied roles carbon dioxide has played and continues to play in the character of our planet. Chapters address the synthesis of CO2 in stars, the evolution of the atmosphere over billions of years, the chemical and physical properties of CO2 and how those influence common phenomena. How well this knowledge is understood and how it was determined, including existing uncertainties in our confidence and the stress from competing possibilities are discussed. Much of the technological jargon in various incorporated sciences has been modified to ease consumption by the non-expert. Features: Provides a historical panorama on how much the world has changed over the eons and the vast influence of carbon dioxide in these changes Follows CO2 through acidic explosive waters, volcanic episodes, sequestered reservoirs, and the chemistry of life Examines the broad scope of chemical and physical attributes carbon dioxide is capable of and their impacts Much of the technological verbiage in various incorporated sciences has been modified to ease consumption by the non-expert. This book is a valuable resource for readers interested in the science of carbon dioxide as well as natural science, the environment, scientific methods, chemistry, and geological sciences.
Authored by world-class scientists and scholars, The Handbook of Natural Resources, Second Edition, is an excellent reference for understanding the consequences of changing natural resources to the degradation of ecological integrity and the sustainability of life. Based on the content of the bestselling and CHOICE-awarded Encyclopedia of Natural Resources, this new edition demonstrates the major challenges that the society is facing for the sustainability of all well-being on the planet Earth. The experience, evidence, methods, and models used in studying natural resources are presented in six stand-alone volumes, arranged along the main systems of land, water, and air. It reviews state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of remote sensing and geospatial data with field-based measurements in the study of natural resources. Volume 6, Atmosphere and Climate, covers atmospheric pollution and the complexity of atmospheric systems and their interactions with human activity. As an excellent reference for fundamental information on air systems, the handbook includes coverage of acid rain and nitrogen deposition, air pollutants, elevated carbon dioxide, atmospheric circulation patterns, and climate change effects on polar regions and climatology. New in this edition are discussions on aerosols monitoring and mapping, greenhouse gases, the Greenland ice sheet, and mountainous regions. This book presents the key processes, methods, and models used in studying the impact of air pollution on ecosystems worldwide. Written in an easy-to-reference manner, The Handbook of Natural Resources, Second Edition, as individual volumes or as a complete set, is an essential reading for anyone looking for a deeper understanding of the science and management of natural resources. Public and private libraries, educational and research institutions, scientists, scholars, and resource managers will benefit enormously from this set. Individual volumes and chapters can also be used in a wide variety of both graduate and undergraduate courses in environmental science and natural science at different levels and disciplines, such as biology, geography, earth system science, and ecology.
The Advanced Research Workshop entitled "Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the At- sphere" was held in Abbaye de Fontevraud, France, from April 29 to May 3, 2002. The meeting involved 40 researchers from 14 countries. The goal of this meeting was to address a problem that the scienti?c community is aware of for many years. Up now, however, the so- tion for this problem is far from satisfactory. Pair e?ects are called unconventional in the title of this meeting. In speci?c spectral domains and/or geophysical conditions they are recognized to play a dominant role in the absorption/emission properties of the atmosphere. Water vapor continuum absorption is among the most prominent examples. Permanently improving accuracy of both laboratory studies and ?eld observations requires better knowledge of the spectroscopic features - tributable to molecular pairs which may form at equilibrium. The Workshop was targeted both to clarify the pending questions and, as far as feasible, to trace the path to possible answers since the underlying phenomena are yet incompletely understood and since a reliable theory is often not available. On the other hand, the lack of precise laboratory data on bimolecular absorption is often precluding the construction of reliable theoretical models. Ideally, the knowledge accumulated in the course of laboratory studies should correlate with the practical demands from those who are carrying out atmospheric ?eld measurements and space observations.
The NATO ARW in Irkutsk was an excellent occasion for the coming together of Eastern and Western scientists who are involved in tropospheric science; the workshop has greatly contributed to the scientific and social understanding among the participants from the many different countries. Many new personal contacts were made which will help to strengthen future collaborations. In particular, the Lake Baikal area and the Limnological Institute offer splendid opportunities for environmental research which, in part, is already on going. For most participants it was the first time to see the impressive nature of the Lake Baikal region. Hopefully, there will be a chance for a follow-up event in Siberia where researchers from the East and West can again meet and engage in fruitful scientific dialogue. The book contains extended abstracts of the lectures and the poster presentations presented at the NATO ARW "Global Atmospheric Change and its Impact on Regional Air Quality" Irkutsk, Lake Baikal, Russian Federation, August 21-27, 2001. The ARW was composed of 22 oral presentations by key lecturers and 6 additional shorter oral presentations from participants. In a special poster session the 36 poster contributions were presented and discussed. Unfortunately not all contributors submitted extended abstracts, however, to compensate two contributions have been added from 2 participants who were originally invited but were unable to attend.
Space storms, the manifestation of bad weather in space, have a
number of physical effects in the near-Earth environment:
acceleration of charged particles in space, intensification of
electric currents in space and on the ground, impressive aurora
displays, and global magnetic disturbances on the Earth's surface.
Space weather has been defined as conditions on the Sun and in the
solar wind, magnetosphere, ionosphere, and atmosphere that can
influence the performance and reliability of space- and
ground-based technological systems and can endanger human life'.
The 19 chapters of this book, written by some of the foremost
experts on the topic, present the most recent developments in space
storm physics and related technological issues, such as malfunction
of satellites, communication and navigation systems, and electric
power distribution grids. As recommended in the United Nations Space & Atmospheric Science Education Curriculum booklet. Please find it amongst classics such as T.J.M. Boyd, J.J. Sanderson, J.K. Hargreaves and M.C. Kelly etc.
In this volume a thorough review is given of waves in dusty plasmas, a fascinating new domain combining plasmas and charged dust, two omnipresent ingredients of the Universe. Spokes and braids observed in the rings of Saturn cannot be explained by gravitation alone, but need the presence of charged dust. Other examples abound, as in zodiacal light, noctilucent clouds, comets and molecular clouds. After discussing charging mechanisms, supported by exciting new experiments, and space observations, the book describes extensions of known plasma modes covering the low frequencies typical for charged dust. Mixing detailed theoretical steps with summaries of expert contributions, a systematic multi-species treatment puts the literature in perspective, suitable also for newcomers. Typical complications like fluctuating dust charges, self-gravitational effects, and size distributions are dealt with, before ending with an outlook to future work and open questions. In this way, experts as well as interested newcomers will find a reliable guide, not just a compendium.
Recent studies have demonstrated a link between ozone changes caused by human activities and changing UV levels at the Earth's surface, as well as a link to climate through changes in radiative forcing and links to changes in chemical composition. This book draws together key scientists who provide state of the art contributions on the variable ozone layer and the interplay of longwave and shortwave radiative interactions which link ozone, the climate and UV issues.
The strong and continuing increase in airtraffic, the plans to build supersonicair craftsand hypersonicspace-transportsystems, the developments ofhydrogentech nology, andthe generalconcern onglobalchangeshave raised questionson effects of emissions from air traffic on the environment and especially the atmosphere aboveand shortlybelowthe tropopause. What are the consequences of watervap our emissions on the formation of high clouds and global c1imate?What are the possibleeffectsofemissions on the ozonelayerin the stratosphere and uppertro posphere?Which technological developments can help to reducethe emissions? These questions get increasing attention in the public. Some previous meetings of scientific experts have shown that the topic is of high interest but most questions cannot be answered yet to asufficientdegree. More research is necessaryand the topic requires interdisciplinarycooperation. Moreover, there is a need to document the basic knowledge required to assess possible consequences of increasing and changingtraffic. With respect to possible global changes, airtraffic at cruising alti tude seemsto have the mostimportantinnuence and itbecomes necessaryto con sidertechnological alternatives. The German Aerospace Research Establishment (DLR) has initiated aseries of seminars on fundamental problems ofsciences inwhich DLR is envolved. Previous seminarsconsidered: 1984 NonlinearDynamicsofTranscritical Flows 1985 UncertaintyandControl 1986 Artificial Intelligenceand Man-Machine-Systems 1987 Parallel Computing in Science and Engineering 1988 HydrocarbonOxidation 1989 Optlmizatlon, Methods and Applications, Possibilities andLimitations This bookcontainsten paperswhichhad been preparedfor presentationatthe 1990 DLR-Seminaron AirTrafficand the Environment- Background, Tendencies and Potential Global AtmosphericEffects. At the seminar, an additional paper is to be presented by Dr. Dieter H. Ehhalt."
Our space age technology enables global communication, navigation, and power distribution that has given rise to our 'smart', interconnected and spacefaring world. Much of the infrastructure modern society depends on, to live on Earth and to explore space, is susceptible to space weather storms originating from the Sun. The Second Edition of this introductory textbook is expanded to reflect our increased understanding from more than a dozen scientific missions over the past decade. Updates include discussions of the rapidly expanding commercial space sector, orbital debris and collision hazards, our understanding of solar-terrestrial connections to climate, and the renewed emphasis of human exploration of the Moon and Mars. It provides new learning features to help students understand the science and solve meaningful problems, including some based on real-world data. Each chapter includes learning objectives and supplements that provide descriptions of the science and learning strategies to help students and instructors alike.
Ice is melting around the world and glaciers are disappearing. Water, which has been solid for thousands and even millions of years, is being released into streams, rivers, lakes and oceans. Embedded in this new fluid water, and now being released, are ancient microbes whose effects on today's organisms and ecosystems is unknown and unpredictable. These long sleeping microbes are becoming physiologically active and may accelerate global climate change. This book explores the emergence of these microbes. The implications for terrestrial life and the life that might exist elsewhere in the universe are explored. Key Selling Points: Explores the role of long frozen ancient microbes will have when released due to global warming Describes how ice preserves microbes and microbial genomes for thousands or millions of years Reviews work done on permafrost microbiology Identifies potential health hazards and environmental risks Examines implications for the search for extraterrestrial life.
In Atmospheric Things Derek P. McCormack explores how atmospheres are imagined, understood, and experienced through experiments with a deceptively simple object: the balloon. Since the invention of balloon flight in the late eighteenth century, balloons have drawn crowds at fairs and expositions, inspired the visions of artists and writers, and driven technological development from meteorology to military surveillance. By foregrounding the distinctive properties of the balloon, McCormack reveals its remarkable capacity to disclose the affective and meteorological dimensions of atmospheres. Drawing together different senses of the object, the elements, and experience, McCormack uses the balloon to show how practices and technologies of envelopment allow atmospheres to be generated, made meaningful, and modified. He traces the alluring entanglement of envelopment in artistic, political, and technological projects, from the 2009 Pixar movie Up and Andy Warhol's 1966 installation Silver Clouds to the use of propaganda balloons during the Cold War and Google's experiments with delivering internet access with stratospheric balloons. In so doing, McCormack offers new ways to conceive of, sense, and value the atmospheres in which life is immersed.
Geophysical fluid dynamics examines the dynamics of stratified and turbulent motion of fluids in the ocean and outer core, and of gases in the atmosphere. This book explains key notions and fundamental processes of the dynamics of large- and medium-scale atmospheric and oceanic motions from the unifying viewpoint of the rotating shallow water model. The model plays a distinguished role in geophysical fluid dynamics. It has been used for about a century for conceptual understanding of various phenomena, for elaboration of approaches and methods to be used later in more complete models, for development and testing of numerical codes, and for many other purposes. In spite of its simplicity, the model grasps essential features of the complete "primitive equations" models, being their vertically averaged version, and gives an intuitive representation and clear vision of principal dynamical processes. This book is a combination of a course on geophysical fluid dynamics (Part 1), with explanations and illustrations of fundamentals, and problems, as well as a more advanced treatise of a range of principal dynamical phenomena (Part 2), including recently arisen approaches and applications (Part 3). Mathematics and physics underlying dynamical phenomena are explained, with necessary demonstrations. Yet, an important goal of the book is to develop the reader's physical intuition and qualitative insights.
Compelling . . . Clark's enthusiasm shines through on every page' Sunday Times 'An engaging and lively history' Financial Times __________ A thin, invisible layer of air surrounds the Earth, sustaining all known life on the planet and creating the unique climates and weather patterns that make each part of the world different. In Firmament, atmospheric scientist and science communicator Simon Clark offers a rare and accessible tour of the ins and outs of the atmosphere and how we know what we know about it. From the workings of its different layers to why carbon dioxide is special, from pioneers like Pascal to the unsung heroes working in the field to help us understand climate change, Firmament introduces us to an oft-overlooked area of science and not only lays the ground work for us to better understand the debates surrounding the climate today, but also provides a glimpse of the future that is possible with this knowledge in hand. __________
Downscaling is a widely used technique for translating information from large-scale climate models to the spatial and temporal scales needed to assess local and regional climate impacts, vulnerability, risk and resilience. This book is a comprehensive guide to the downscaling techniques used for climate data. A general introduction of the science of climate modeling is followed by a discussion of techniques, models and methodologies used for producing downscaled projections, and the advantages, disadvantages and uncertainties of each. The book provides detailed information on dynamic and statistical downscaling techniques in non-technical language, as well as recommendations for selecting suitable downscaled datasets for different applications. The use of downscaled climate data in national and international assessments is also discussed using global examples. This is a practical guide for graduate students and researchers working on climate impacts and adaptation, as well as for policy makers and practitioners interested in climate risk and resilience.
This book introduces the reader to all the basic physical building blocks of climate needed to understand the present and past climate of Earth, the climates of Solar System planets, and the climates of extrasolar planets. These building blocks include thermodynamics, infrared radiative transfer, scattering, surface heat transfer and various processes governing the evolution of atmospheric composition. Nearly four hundred problems are supplied to help consolidate the reader's understanding, and to lead the reader towards original research on planetary climate. This textbook is invaluable for advanced undergraduate or beginning graduate students in atmospheric science, Earth and planetary science, astrobiology, and physics. It also provides a superb reference text for researchers in these subjects, and is very suitable for academic researchers trained in physics or chemistry who wish to rapidly gain enough background to participate in the excitement of the new research opportunities opening in planetary climate.
Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.
Carbon dioxide has become one of the “defining molecules” of our century, due to its role in Earth's climate. This text traces the development of the perception of carbon dioxide through the ages. With layman summaries at the beginning of each chapter and extensive literature references and notes, the text takes the reader through the history of our understanding of the gas, from its early discovery as a separate gas in the mid-17th century to the recognition of its radiative properties and impact on climate in the late 19th and 20th century. The text describes the world's slow efforts to control the rise in carbon dioxide over the last 50 years and concludes by setting the stage for the Paris climate accords and subsequent negotiations. The world must reduce the emissions of carbon dioxide fast, and this book discusses options to achieve that goal. Han Dolman is a climate scientist and director of the Royal NIOZ, the Netherlands Institute for Sea Research, as well as a Professor at the Department of Earth Sciences, Free University of Amsterdam. For many years, his work has been centered around the global carbon cycle and its relation to our climate. Over the length of his career, he has been involved in several international research programs such as the Global Climate Observing System.
This edited book first gives an overview of issues in the studies of atmospheric sciences and then elaborates on extreme events in air pollution, their assessment, impacts, and mitigation strategies. It covers general overview of factors governing in atmosphere that lead to air pollution, description about recent and hazardous air pollution episodes, emergencies and extremes in atmospheric sciences, impact studies on living organisms and atmosphere related to emergencies and possible remedies/mitigation strategies which may also include green growth strategies for management. Increase in anthropogenic activities from different sources results in very high concentrations of air pollutants in the atmospheres and they lead to cause disturbance in seasonal cycles and atmospheric phenomena, ecological imbalance and change in the quality of air. These impacts are the major cause of short-term or long-term effects on living and non-living systems. In the recent years, several instances of extremes atmosphere and air pollution related emergencies causing accidental episodes, fog, smog, health related, heat and cold wave etc. are experienced. This book brings the attention on such issues in atmospheric sciences and discuss the disaster preparedness and management plus emergencies. This book is valuable reading material for students in Environmental Science, Biological Science, Medical Science, Policy Planning, Disaster Management and Agriculture. It's useful for environmental consultants, researchers and other professionals involved in air quality, plant, humans and disasters related research.
The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.
Originally published in 1955 Atmospheric Turbulence examines dynamic meteorology and the fundamental part it plays in the overall science of meteorology. The book examines the theory of atmospheric turbulence as a more mathematically developed area than largescale motions of the atmosphere and examines its significance in economic, military and industrial spheres. The book focuses on the effect and importance of atmospheric turbulence, not only to meteorologists, but the designers of large aircraft. The book addresses the effects of turbulence and the properties of the atmosphere that can be found closer to the ground. This book will be of interest to atmospheric physicists and meteorologists. |
![]() ![]() You may like...
Too White To Be Coloured, Too Coloured…
Ismail Lagardien
Paperback
![]()
Being A Black Springbok - The Thando…
Sibusiso Mjikeliso
Paperback
![]()
Thermal Energy Storage - Basics, Design…
G. Beckmann, P.V. Gilli
Hardcover
R3,166
Discovery Miles 31 660
Rotating Machinery, Optical Methods…
Dario Di Maio, Javad Baqersad
Paperback
R5,863
Discovery Miles 58 630
|