![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
The emphasis of Planetary Atmospheres is on comparative aspects of
planetary atmospheres, generally meaning comparison with the Earth,
including atmospheric composition, thermal structure, cloud
properties, dynamics, weather and climate, and aeronomy. The goal
is to look for common processes at work under different boundary
conditions in order to reach a fundamental understanding of the
physics of atmospheres. As part of a general Physics course, the
material is chosen to emphasise certain aspects that will be of
broad topical interest:
The Global Carbon Cycle and Climate Change: Scaling Ecological Energetics from Organism to the Biosphere, Second Edition examines the global carbon cycle and energy balance of the biosphere, following carbon and energy through increasingly complex levels of metabolism-from cells to ecosystems. Utilizing scientific explanations, analyses of ecosystem functions, extensive references, and cutting-edge examples of energy flow in ecosystems, this is an essential resource to aid in understanding the scientific basis of the role of ecological systems in climate change. Includes new chapters on dynamic properties of the global carbon cycle, climate models and projections, and managing carbon in the global biogeochemical cycle.
Climate Observations: Data Quality Control and Time Series Homogenization pulls together the different phases of the production of high-quality climatic datasets, allowing interested readers to obtain a coherent picture on the complexity and importance of this task. There are several new methods of time series homogenization, each very complex and fast developing. The thematic discussion of the production of high quality climatic datasets provides the opportunity to reduce errors, including the careful installation of meteorological instruments, the application of strict observing rules and inspections, and the use of sophistically developed statistical software to detect and remove errors or biases. This book is intended for professionals working on climate data management at the national meteorological services, for the users of observed climatic data, and for students and researchers studying atmospheric and climate science. Members of the Royal Meteorological Society are eligible for a 35% discount on all Developments in Weather and Climate Science series titles. See the RMetS member dashboard for the discount code.
Science of Weather, Climate and Ocean Extremes presents an evidence-based view of the most important ways in which the build-up of greenhouse gases in the atmosphere is affecting both our atmosphere and the oceans. The book provides compelling reasons why concerted action is required to slow the rate at which the atmosphere and oceans are changing. It not only covers longer-term changes in extremes and their causes, but also considers the drivers and attribution of extreme events, including relevant methods and techniques. Members of the Royal Meteorological Society are eligible for a 35% discount on all Developments in Weather and Climate Science series titles. See the RMetS member dashboard for the discount code.
Carbon Mineralization in Coastal Wetlands: From Litter Decomposition to Greenhouse Gas Dynamics fills the current knowledge gap in carbon mineralization, providing a balanced view of the carbon dynamics of coastal wetlands. This book provides a holistic treatment of carbon mineralization, from the contributions of litter/root decomposition pathways to carbon mineralization and the processes and sources of greenhouse gas production. This book compares carbon mineralization in coastal wetlands and highlights differences in carbon dynamics. As studies on blue carbon have strongly emphasized the storage potential of coastal wetlands, this book serves as an ideal resource on the topics discussed.
Precipitation Science: Measurement, Remote Sensing, Microphysics and Modeling addresses the latest key concerns for researchers in precipitation science, mainly observing, measuring, modeling and forecasting. Using case studies and global examples, the book demonstrates how researchers are addressing these issues using state-of-the-art methods and models to improve accuracy and output across the field. In the process, it covers such topics as discrepancies between models and observations, precipitation estimations, error assessment, droplet size distributions, and using data in forecasting and simulations. Other sections cover improved standard approaches, novel approaches, and coverage of a variety of topics such as climatology, data records, and more. By providing comprehensive coverage of the most up-to-date approaches to understanding, modeling, and predicting precipitation, this book offers researchers in atmospheric science, hydrology and meteorology with a comprehensive resource for improving outcomes and advancing knowledge.
Natural and Anthropogenic Impacts on Cave Climates: Postojna and Predjama Show Caves (Slovenia) presents an analysis of continuous time-series data for show caves in Slovenia and their significance in understanding global cave microclimates. The book presents detailed guidelines and procedures for conducting temperature and CO2 measurements in caves and uses Slovenian caves as a detailed case study to demonstrate their application. Critical interpretations of these temporal series provide the reader with specific indicators of the conditions for water condensation to occur and CO2 thresholds and how to apply them to different cave systems. Direct comparisons are made between microclimate data from caves with varying levels of tourism, and the linkage between the number of visitors and microclimate changes is discussed in detail. This book is a unique reference on cave meteorology for Climate Scientists, Meteorologists, Geologists, Microbiologists, Environmental and Conservation Scientists, and Cave Managers.
Environmental Systems Science: Theory and Practical Applications looks at pollution and environmental quality from a systems perspective. Credible human and ecological risk estimation and prediction methods are described, including life cycle assessment, feasibility studies, pollution control decision tools, and approaches to determine adverse outcome pathways, fate and transport, sampling and analysis, and cost-effectiveness. The book brings translational science to environmental quality, applying groundbreaking methodologies like informatics, data mining, and applications of secondary data systems. Multiple human and ecological variables are introduced and integrated to support calculations that aid environmental and public health decision making. The book bridges the perspectives of scientists, engineers, and other professionals working in numerous environmental and public health fields addressing problems like toxic substances, deforestation, climate change, and loss of biological diversity, recommending sustainable solutions to these and other seemingly intractable environmental problems. The causal agents discussed include physical, chemical, and biological agents, such as per- and polyfluoroalkyl substances (PFAS), SARS-CoV-2 (the COVID-19 virus), and other emerging contaminants.
Climate Change Science: Causes, Effects and Solutions for Global Warming presents unbiased, state-of-the-art, scientific knowledge on climate change and engineering solutions for mitigation. The book expands on all major prospective solutions for tackling climate change in a complete manner. It comprehensively explains the variety of climate solutions currently available, including the remaining challenges associated with each. Effective, complementary solutions for engineering to combat climate change are discussed and elaborated on. Some of the more high-risk proposals are qualitatively and quantitatively compared and contrasted with low-risk mitigation actions to facilitate the formulation of feasible, environmentally-friendly solutions. The book provides academics, postgraduate students and other readers in the fields of environmental science, climate change, atmospheric sciences and engineering with the information they need for their roles. Through exploring the fundamental information currently available, exergy utilization, large-scale solutions, and current solutions in place, the book is an invaluable look into how climate change can be addressed from an engineering-perspective using scientific models and calculations.
The Impacts of Climate Change: A Comprehensive Study of Physical, Biophysical, Social and Political Issues presents the very real issues associated with climate change and global warming and how it affects the planet and everyone on it. From a physical perspective, the book covers such topics as population pressures, food issues, rising sea-levels and coastline degradation, and health. It then goes on to present social impacts, such as humanitarian issues, ethics, adaptation, urban issues, local action, and socio-economic issues. Finally, it addresses the political impacts, such as justice issues and politics of climate change in different locations. By offering this holistic review of the latest impacts of climate change, the book helps researchers to better understand what needs to be done in order to move toward renewable energy, change societal habits, and move toward sustainable development.
Urban Heat Island Modeling for Tropical Climates takes into account the different urban physics in tropical environments, presenting a way of UHI scaling for tropical cities. Topics include measuring, modeling and proper mitigation strategies, which account for the surface energy balance of tropics. Tropical cities are more susceptible to the effects of projected global warming because of conditions in tropical climates and the rapid growth of so many cities in this zone. The need for research on measuring, modeling and mitigation of UHI effects in tropical cities is of growing importance. This book walks through the basics of Urban Heat Islands, including causes, measurement and analysis then expands upon issues as well as the novel techniques that can be used to address issues specific to the region.
Thermal Physics of the Atmosphere, Second Edition offers a concise and thorough introduction on how basic thermodynamics naturally leads to advanced topics in atmospheric physics. Chapters cover the basics of thermodynamics and its applications in atmospheric science and describe major applications, specifically more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation and radiative processes. The book is fully revised, featuring informative sections on radiative transfer, thermodynamic cycles, the historical context to potential temperature concept, vertical thermodynamic coordinates, dewpoint temperature, the Penman equation, and entropy of moist air. This book is a necessary guide for students (graduate, advanced undergraduate, master's level) of atmospheric science, meteorology, climate science and researchers in these fields. Members of the Royal Meteorological Society are eligible for a 35% discount on all Developments in Weather and Climate Science series titles. See the RMetS member dashboard for the discount code.
Semi-Lagrangian Advection Methods and Their Applications in Geoscience provides a much-needed resource on semi-Lagrangian theory, methods, and applications. Covering a variety of applications, the book brings together developments of the semi-Lagrangian in one place and offers a comparison of semi-Lagrangian methods with Eulerian-based approaches. It also includes a chapter dedicated to difficulties of dealing with the adjoint of semi-Lagrangian methods and illustrates the behavior of different schemes for different applications. This allows for a better understanding of which schemes are most efficient, stable, consistent, and likely to introduce the minimum model error into a given problem. Beneficial for students learning about numerical approximations to advection, researchers applying these techniques to geoscientific modeling, and practitioners looking for the best approach for modeling, Semi-Lagrangian Advection Methods and Their Applications in Geoscience fills a crucial gap in numerical modeling and data assimilation in geoscience.
Fundamentals of Bioaerosols Science: From Physical to Biological Dimensions for Airborne Biological Particles discusses the physical science and biological dimensions of bioaerosols science. Physical scientists are often unfamiliar with biological aspects of bioaerosols science (e.g., molecular biology, PCR, DNA sequencing, and so on), while biologists are often unfamiliar with physical aspects of bioaerosols science (e.g., aerosol science, air sampling, aerodynamic diameter, and so on). This book covers the physical properties of bioaerosols, sampling and monitoring methods, control technologies, and impacts on climate. It is primarily for graduate students, researchers and professors who have non-biology (e.g., physical, chemical, or engineering) backgrounds, such as meteorology, Earth science, atmospheric science, climate science, and more.
The Asian Summer Monsoon: Characteristics, Variability, Teleconnections and Projection focuses on the connections between the Indian Summer and East Asian Summer Monsoons, also including the South China Sea Summer Monsoon. While these systems have profound differences, their interactions have significant impacts on the climatic regimes in the region and throughout the world. In summer, the ASM engine pumps moisture transported across thousands of miles from the Indian and Pacific Oceans to the monsoon regions, producing heavy rains over south and east Asia and its adjacent marginal seas. This book reviews the different subsystems and their impact, providing guidance to enhance prediction models.
Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change presents an integrated, collaborative approach to observing and understanding various surface temperatures from a whole-Earth perspective. The book describes the progress in improving the quality of surface temperatures across different domains of the Earth's surface (air, land, sea, lakes and ice), assessing variability and long-term trends, and providing applications of surface temperature data to detect and better understand Earth system behavior. As cooperation is essential between scientific communities, whose focus on particular domains of Earth's surface and on different components of the observing system help to accelerate scientific understanding and multiply the benefits for society, this book bridges the gap between domains.
Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment: A Remote Sensing Approach reviews multivariate hazards in a non-stationary environment, covering both short and long-term predictions from earth observations, along with long-term climate dynamics and models. The book provides a detailed overview of remotely sensed observations, current and future satellite missions useful for hydrologic studies and water resources engineering, and a review of hydroclimatic hazards. Given these tools, readers can improve their abilities to monitor, model and predict these extremes with remote sensing. In addition, the book covers multivariate hazards, like landslides, in case studies that analyze the combination of natural hazards and their impact on the natural and built environment. Finally, it ties hydroclimatic hazards into the Sendai Framework, providing another set of tools for reducing disaster impacts.
Smart, Resilient and Transition Cities: Emerging Approaches and Tools for Climate-Sensitive Urban Development starts with a presentation of three widespread Urban Metaphors, which are gaining increasing attention from urban planners and decision-makers: Smart City, Resilient City and Transition Towns, being all of them focused on the need for enhancing cities' capacities to cope with the multiple and heterogeneous challenges threatening contemporary cities and their future development and, above all, with climate issues. Then, the Authors provide an overview of current large-scale and urban strategies to counterbalance climate change so far undertaken in different geographical contexts (Europe, United States, China, Africa and Australia), shedding light on the different approaches, on the different weights assigned to mitigation and adaptation issues as well as on the main barriers hindering their effectiveness and translation into measurable outcomes. Opportunities and criticalities arising from the rich, 'sprawled' and 'blurred' landscape of current strategies and initiatives in the face of climate change pave the way to a discussion on the lessons learnt from current initiatives and provide new hints for developing integrated climate strategies, capable to guide planners and decision makers towards a climate sensitive urban development Smart, Resilient and Transition Cities: Emerging Approaches and Tools for Climate-Sensitive Urban Development merges a scientific approach with a pragmatic one. Through a case study approach, the Authors explore strengths and weaknesses of institutional and informal practices to foreshadow innovative paths for an adaptive process of urban governance in the face of climate change. The book guides the reader along new governance paths, characterized by continuous learning and close cooperation and communication among different actors and stakeholders and, in so doing, helps them to overcome current 'siloed' approaches to climate issues.
The Arctic: A Barometer of Global Climate Variability provides a comprehensive source of information on all aspects of the Arctic region. Through thorough research, first-hand accounts and case studies, the book details international arctic research initiatives and native environments, including flora and fauna. Sections explore the impact of climate change, the effect of the Arctic on climate change, the environmental issues facing the region and how it is adapting. It is also a must-read source of information for polar scientists, applicable PhD students, early researchers, environmental scholars, and anyone searching for information on any aspect of the Arctic region. Users will find a great resource that brings together all aspects of Arctic research into one concise book.
Monitoring drought’s slow evolution and identifying the end of a drought is still a big challenge for scientists, natural resource managers, and decision makers. This comprehensive two-volume set with contributions from over 200 experts, and featuring case studies representing numerous countries throughout the world, discusses different aspects of drought from types, indices, and forecasting to monitoring, modeling, and mitigation measures. It also addresses how climate change is impacting drought and decision-making concluding with lessons learned about science, policy, and managing uncertainty. Features: Provides a global perspective on drought prediction and management and a synthesis of the recent state of knowledge. Covers a wide range of topics from essential concepts and advanced techniques for forecasting and modeling drought to societal impacts, consequences, and planning Presents numerous case studies with different management approaches from different regions and countries. Addresses how climate change impacts drought, the increasing challenges associated with managing drought, decision making, and policy implications. Includes contributions from hundreds of experts around the world. Professionals, researchers, academics, and postgraduate students with knowledge in Environmental Sciences, Ecology, Agriculture, Forestry, Hydrology, Water Resources Engineering, and Earth Sciences, as well as those interested in how climate change impacts drought management, will gain new insights from the experts featured in this two-volume handbook.
Authored by world-class scientists and scholars, the Handbook of Natural Resources, Second Edition, is an excellent reference for understanding the consequences of changing natural resources to the degradation of ecological integrity and the sustainability of life. Based on the content of the bestselling and CHOICE awarded Encyclopedia of Natural Resources, this new edition demonstrates the major challenges that the society is facing for the sustainability of all wellbeing on planet Earth. The experience, evidence, methods, and models used in studying natural resources are presented in six stand-alone volumes, arranged along the main systems: land, water, and air. It reviews state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of remote sensing data in the study of natural resources on a global scale. The six volumes in this set cover: Terrestrial Ecosystems and Biodiversity; Landscape and Land Capacity; Wetlands and Habitats; Fresh Water and Watersheds; Coastal and Marine Environments; and finally Atmosphere and Climate. Written in an easy-to-reference manner, the Handbook of Natural Resources, Second Edition, as a complete set, is essential for anyone looking for a deeper understanding of the science and management of natural resources. Public and private libraries, educational and research institutions, scientists, scholars, and resource managers will benefit enormously from this set. Individual volumes and chapters can also be used in a wide variety of both graduate and undergraduate courses in environmental science and natural science courses at different levels and disciplines, such as biology, geography, Earth system science, ecology, etc.
Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Moeller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture.
Adapting to Climate Change in Europe: Exploring Sustainable Pathways - From Local Measures to Wider Policies is a scientific synthesis of a four-year project on adaptation activities in Europe. It combines scientific assessments with real-world case descriptions to present specific tools and methods. This book aims at ensuring sustainable solutions in adaptation to climate change. The challenge of adaptation is still at an early stage; this book fills relevant gaps in current knowledge on climate adaptation, providing a crucial set of tools to support effective decision-making. It acts as a guide to practitioners and decision-makers along different steps of on-going adaptation processes. Adapting to Climate Change in Europe contains methods and tools for improving stakeholder's participation and analyzing costs and benefits of different adaptation measures. It is an essential resource for researchers, graduate students, and experts and policymakers working in climate change and adaptation. |
![]() ![]() You may like...
Computational Techniques for Modeling…
Vitaliy Prusov, Anatoliy Doroshenko
Hardcover
R5,490
Discovery Miles 54 900
Air Quality Monitoring and Advanced…
Yongjie Li, Ka In Hoi, …
Paperback
Schumann Resonance for Tyros…
Alexander Nickolaenko, Masashi Hayakawa
Hardcover
R3,682
Discovery Miles 36 820
Conceptual Boundary Layer Meteorology…
April L. Hiscox
Paperback
|