![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
Through a comprehensive collection of articles, The Oxford Encyclopedia of Climate Change Communication explores the origin and evolution of our understanding of climate change as it is presented in communication and media. Taking a multifaceted approach, the encyclopedia offers a scholarly examination of the effects of climate change communication on public opinion and policy decisions; journalistic coverage and media portrayals of climate change; communication strategies and campaigns; and the implications for effective communication, including those of outreach and advocacy efforts. Additionally, the encyclopedia reviews climate change communication research methods and approaches. Global in breadth and deeply resourced, The Oxford Encyclopedia of Climate Change Communication serves as an essential source of perspective on all aspects of this important area of scholarship. It is led by Editor in Chief Dr. Matthew C. Nisbet, along with Associate Editors Dr. Shirley S. Ho, Dr. Ezra Markowitz, Dr. Saffron O'Neill, Dr. Mike S. SchAfer, and Dr. Jagadish Thaker.
Provides tools and techniques to identify and address distortions and to interpret data coming from Lidar sensing technology This book covers the issues encountered in separating the backscatter and transmission terms in the LIDAR equation when profiling the atmosphere with zenith-directed and vertically-scanning Lidars. Solutions in Lidar Profiling of the Atmosphere explains how to manage and interpret the Llidar signals when the uncertainties of the involved atmospheric parameters are not treatable statistically. The author discusses specific scenarios for using specific scenarios for profiling vertical aerosol loading. Solutions in Lidar Profiling of the Atmosphere emphasizes the use of common sense when interacting with potentially large distortions inherent in most inversion techniques. * Addresses the systematic errors in LIDAR measurements * Proposes specific methods to estimate systematic distortions * Explains how to apply these methods to both simulated and real data Solutions in Lidar Profiling of the Atmosphere is written for scientists, researchers, and graduate students in Meteorology and Geophysics.
The second edition of this concise, affordable textbook is ideal for curious undergraduate majors and non-majors taking a first course in meteorology. The first two chapters introduce readers to the main concepts and tools used to analyze weather patterns. Chapters 3-8 provide a foundational understanding of the fundamental processes taking place in the atmosphere, and in Chapters 9-12 these physical concepts are applied to specific weather phenomena. Weather concepts are then used in Chapters 13-15 to explain weather forecasting, air pollution, and the impact of climate change on weather. Key concepts are illustrated through a running case study of a single mid-latitude cyclone, providing students with an opportunity to progressively develop their understanding of weather phenomena with a familiar example approached from multiple perspectives. This edition includes expanded and updated coverage of precipitation types and formation, satellite and radar technology, tornadoes, and more. It also features thought-provoking end-of-chapter review questions, new visual analysis exercises, an expanded test bank and nearly 100 new figures.
Optical instruments are routinely employed to obtain a wealth of
information about the atmosphere, including its composition,
temperature, and winds. A bewildering variety of optical
instruments have been proposed over the years, making it difficult
to decide which instrument should be chosen to make a specific
measurement. Spectral Imaging of the Atmosphere traces the
historical development of both spectral and imaging methods and
places them in a unified framework relevant to observations of the
troposphere, stratosphere, mesosphere and thermosphere. The
underlying concepts of various measurement methodologies are
presented and paired with appropriate applications. A selection of
specific spectral imaging instruments, appropriate to illustrate
each conceptual type, is described in detail.
Reducing carbon dioxide (CO2) emissions is imperative to stabilizing our future climate. Our ability to reduce these emissions combined with an understanding of how much fossil-fuel-derived CO2 the oceans and plants can absorb is central to mitigating climate change. In The Carbon Cycle, leading scientists examine how atmospheric carbon dioxide concentrations have changed in the past and how this may affect the concentrations in the future. They look at the carbon budget and the "missing sink" for carbon dioxide. They offer approaches to modeling the carbon cycle, providing mathematical tools for predicting future levels of carbon dioxide. This comprehensive text incorporates findings from the recent IPCC reports. New insights, and a convergence of ideas and views across several disciplines make this book an important contribution to the global change literature.
Time-series analysis is used to identify and quantify periodic features in datasets and has many applications across the geosciences, from analysing weather data, to solid-Earth geophysical modelling. This intuitive introduction provides a practical 'how-to' guide to basic Fourier theory, with a particular focus on Earth system applications. The book starts with a discussion of statistical correlation, before introducing Fourier series and building to the fast Fourier transform (FFT) and related periodogram techniques. The theory is illustrated with numerous worked examples using R datasets, from Milankovitch orbital-forcing cycles to tidal harmonics and exoplanet orbital periods. These examples highlight the key concepts and encourage readers to investigate more advanced time-series techniques. The book concludes with a consideration of statistical effect size and significance. This useful book is ideal for graduate students and researchers in the Earth system sciences who are looking for an accessible introduction to time-series analysis.
The 3rd edition of "Mesoscale Meteorological Modeling" is a fully
revised resource for researchers and practitioners in the growing
field of meteorological modeling at the mesoscale. Pielke has
enhanced the new edition by quantifying model capability
(uncertainty) by a detailed evaluation of the assumptions of
parameterization and error propagation. Mesoscale models are
applied in a wide variety of studies, including weather prediction,
regional and local climate assessments, and air pollution
investigations.
The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.
This unique monograph presents a collection of papers by leading international fluid dynamicists and applied mathematicians demonstrating the latest state of the art in fluid mechanics. The vast scope and breadth of this subject is illustrated with sections covering evolution in flow problems, convection and transport phenomena, dynamics of atmosphere, and wave propagation.
Over the past few decades, the excitation and ionization of
atmospheric gases has become an area of intense research. A large
amount of data have been accumulated concerning the various
elementary processes which occur when photons, electrons and ions
collide with atoms and molecules. This scattered information has
now been collected in a handbook for the first time, and the
authors give a critical analysis of relevant data.
Walter Greiner (1935-2016) was a German physicist of the Goethe University, Frankfurt, well-known for his many contributions in scientific research and developments, in particular the field of nuclear physics. He was a well-respected science leader and a teacher who had supervised batches of young collaborators and students, many of whom are now leaders in both academics and industry worldwide. Greiner had a wide interest of science which covered atomic physics, heavy-ion physics, and nuclear astrophysics. Greiner co-founded GSI, the Helmholtz Centre for Heavy Ion Research, and the multi-disciplinary research center, FIAS (Frankfurt Institute for Advanced Studies). Besides numerous professorship with universities worldwide, including the University of Maryland, Greiner received many prestigious prizes in honor of his outstanding contributions, among others are the Otto Hahn Prize and the Max Born Prize.This memorial volume is a special tribute by Greiner's former colleagues, students, and friends honoring his contributions and passion in science. The volume begins with a writing by Greiner about his early days in science. The subsequent articles, comprising personal and scientific reminiscences of Walter Greiner, serve as timely reviews on various topics of current interest. |
You may like...
Judgments Over Time - The Interplay of…
Lawrence J. Sanna, Edward C. Chang
Hardcover
R2,012
Discovery Miles 20 120
Contributions To Information Integration…
Norman H. Anderson
Hardcover
R1,233
Discovery Miles 12 330
Modern Earth Buildings - Materials…
M.R. Hall, R. Lindsay, …
Hardcover
R5,709
Discovery Miles 57 090
New Ecoinformatics Tools in…
Vladimir F. Krapivin, Costas A. Varotsos, …
Hardcover
R4,292
Discovery Miles 42 920
|