![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
Complete with numerous exercise sets and solutions, this work is written for advanced students of meteorology and related sciences as well as professional meteorologists and researchers. The first part of the book presents the mathematical tools needed for a thorough understanding of the topics covered in the second. These topics include kinematics of the atmosphere; inertial and dynamic stability; turbulent systems; and novel weather prediction methods with potential for extending the forecasting range.
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. Various aspects of plasma physics are discussed, beginning with particle orbit theory, and including fluid equations, a variety of magnetohydrodynamic (MHD) models, wave equations and kinetic theory. The relationships between these distinct approaches are discussed. In this way, the reader gains a firm grounding in the fundamentals, leading to an understanding of some of the more specialized topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena; Exercises are included.
This book provides a comprehensive introduction to the history and science of major air pollution issues. It begins with an introduction to the basic atmospheric chemistry and the history of discovery of chemicals in the atmosphere, and then moves on to a discussion of the evolution of the earth's atmosphere, and the structure and composition of the present-day atmosphere. It also offers a comprehensive and accessible discussion of the five major atmospheric pollution topics: urban outdoor air pollution, indoor air pollution, acid deposition, stratospheric ozone reduction, and global climate change.
In the third edition of The Physics of Atmospheres, John Houghton has revised his acclaimed textbook to bring it completely up-to-date. The book provides a comprehensive concise description of the physical processes governing the structure and the circulation of the atmosphere. New chapters have been introduced on topics of strong contemporary interest such as chaos and predictability and climate change. The chapters on global observations (especially through remote sensing) and numerical modeling have also been substantially extended.
Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided, to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.
Introduction to Atmospheric Chemistry reviews in ten concise chapters the chemistry of the Earth's atmosphere and some outstanding environmental issues, including air pollution, acid rain, the ozone hole, and global change. Peter Hobbs is an eminent atmospheric science teacher, researcher, and author of several well-known textbooks. This text and his other book Basic Physical Chemistry for the Atmospheric Sciences (Second Edition, Cambridge University Press 2000) form companion volumes. The book, designed to be a primary textbook for a first university course--undergraduate or graduate--in atmospheric chemistry, will find a place in atmospheric science, meteorology, environmental science, geophysics and chemistry curricula. Special features include worked exercises and end-of-chapter student exercises with model solutions in an appendix.
Updated and revised, this highly successful text details the basic chemical principles required for modern studies of atmospheres, oceans, and Earth and planetary systems. This completely accessible introduction allows undergraduate and graduate students with little formal training in chemistry to grasp such fundamental concepts as chemical equilibria, chemical thermodynamics, chemical kinetics, solution chemistry, acid and base chemistry, oxidation-reduction reactions, and photochemistry. In the companion volume Introduction to Atmospheric Chemistry (also to be published in May 2000), Peter Hobbs details atmospheric chemistry itself, including its applications to air pollution, acid rain, the ozone hole, and climate change. Together these two books offer an ideal introduction to atmospheric chemistry for a variety of disciplines.
Global Change and Future Earth is derived from the work of several programs of the International Union of Geodesy and Geophysics (IUGG). It demonstrates how multi- and inter-disciplinary research outputs from the geoscience community can be applied to tackle the physical and societal impacts of climate change and contribute to the Future Earth programme of the International Council for Science. The volume brings together an international team of eminent researchers to provide authoritative reviews on the wide-ranging ramifications of climate change spanning eight key themes: planetary issues; geodetic issues; the Earth's fluid environment; regions of the Earth; urban environments; food security; and risk, safety and security; and climate change and global change. Covering the challenges faced by urban and rural areas, and in both developed and developing counties, this volume provides an important resource for a global audience of graduate students and researchers from a broad range of disciplines, as well as policy advisors and practitioners.
Atmospheric Remote Sensing: Principles and Applications discusses the fundamental principles of atmospheric remote sensing and their applications in different research domains. Furthermore, the book covers the basic concepts of satellite remote sensing of the atmosphere, followed by Ionospheric remote sensing tools like Global Positioning System (GPS) and Very Low Frequency (VLF) wave. Sections emphasize the applications of atmospheric remote study in Ionospheric perturbation, fire detection, aerosol characteristics over land, ocean and Himalayan regions. In addition, the application of atmospheric remote sensing in disaster management like dust storms, cyclones, smoke plume, aerosol-cloud interaction, and their impact on climate change are discussed. This book is a valuable reference for students, researchers and professionals working in atmospheric science, remote sensing, and related disciplines.
Extreme Weather Forecasting reviews current knowledge about extreme weather events, including key elements and less well-known variables to accurately forecast them. The book covers multiple temporal scales as well as components of current weather forecasting systems. Sections cover case studies on successful forecasting as well as the impacts of extreme weather predictability, presenting a comprehensive and model agnostic review of best practices for atmospheric scientists and others who utilize extreme weather forecasts.
Field Measurements for Environmental Remote Sensing: Instrumentation, Intensive Campaigns, and Satellite Applications is an academic synthesis of invaluable in situ measurements and techniques leveraged by the science of environmental remote sensing. Sections cover in situ datasets and observing methods used for satellite remote sending applications and validation, synthesizing the various techniques utilized by well-established application areas under a common paradigm. The book serves as both a textbook for students (upper-level undergraduate to graduate level) and a reference book for practitioners and researchers in the atmospheric, oceanic and remote sensing fields.
Climate Observations: Data Quality Control and Time Series Homogenization pulls together the different phases of the production of high-quality climatic datasets, allowing interested readers to obtain a coherent picture on the complexity and importance of this task. There are several new methods of time series homogenization, each very complex and fast developing. The thematic discussion of the production of high quality climatic datasets provides the opportunity to reduce errors, including the careful installation of meteorological instruments, the application of strict observing rules and inspections, and the use of sophistically developed statistical software to detect and remove errors or biases. This book is intended for professionals working on climate data management at the national meteorological services, for the users of observed climatic data, and for students and researchers studying atmospheric and climate science. Members of the Royal Meteorological Society are eligible for a 35% discount on all Developments in Weather and Climate Science series titles. See the RMetS member dashboard for the discount code.
Climate variability in different ocean basins can impact one another, for instance the El Nino/Southern Oscillation (ENSO) in the Pacific Ocean has remote effects on other tropical oceans around the world, which in turn modulate ENSO. With chapters by eminent researchers, this book provides a comprehensive review on how interactions among the climates in different ocean basins are key contributors to global climate variability. It discusses how interbasin interactions are mediated by oceanic and atmospheric bridges and explains exciting new possibilities for enhancing climate prediction globally. The first part of the book covers essential theory and introduces the basic mechanisms for remote connection and local amplification. The second presents outstanding examples. The latter part discusses applications to cases of societal interest such as impacts on monsoon systems and expectations after climate change. This comprehensive reference is a useful resource for graduate students and researchers in the atmospheric and ocean sciences.
Balancing Greenhouse Gas Budgets: Accounting for Natural and Anthropogenic Flows of CO2 and other Trace Gases provides a synthesis of greenhouse gas budgeting activities across the world. Organized in four sections, including background, methods, case studies and opportunities, it is an interdisciplinary book covering both science and policy. All environments are covered, from terrestrial to ocean, along with atmospheric processes using models, inventories and observations to give a complete overview of greenhouse gas accounting. Perspectives presented give readers the tools necessary to understand budget activities, think critically, and use the framework to carry out initiatives.
Environmental Micropollutants, the latest volume in the Advances in Environmental Pollution Research series, presents the latest research on various environmental micropollutants, as well as their impacts on health and the economy, also addressing the best possible solutions to address the risks presented by these pollutants. The book covers solutions for dusts, infectious particles, heavy metals, organophosphates, atmospheric toxic organic micropollutants, fungal spores, pollutants from E-waste, and antibiotics threats, providing researchers working in environmental science and management with key knowledge to address this increasingly important concern. These types of micropollutants can be present in water, air and soil and can harm health even in low quantities, hence this book covers the challenges these pollutants pose to the environment and human health, presenting practical solutions.
Precipitation Science: Measurement, Remote Sensing, Microphysics and Modeling addresses the latest key concerns for researchers in precipitation science, mainly observing, measuring, modeling and forecasting. Using case studies and global examples, the book demonstrates how researchers are addressing these issues using state-of-the-art methods and models to improve accuracy and output across the field. In the process, it covers such topics as discrepancies between models and observations, precipitation estimations, error assessment, droplet size distributions, and using data in forecasting and simulations. Other sections cover improved standard approaches, novel approaches, and coverage of a variety of topics such as climatology, data records, and more. By providing comprehensive coverage of the most up-to-date approaches to understanding, modeling, and predicting precipitation, this book offers researchers in atmospheric science, hydrology and meteorology with a comprehensive resource for improving outcomes and advancing knowledge.
Environmental Systems Science: Theory and Practical Applications looks at pollution and environmental quality from a systems perspective. Credible human and ecological risk estimation and prediction methods are described, including life cycle assessment, feasibility studies, pollution control decision tools, and approaches to determine adverse outcome pathways, fate and transport, sampling and analysis, and cost-effectiveness. The book brings translational science to environmental quality, applying groundbreaking methodologies like informatics, data mining, and applications of secondary data systems. Multiple human and ecological variables are introduced and integrated to support calculations that aid environmental and public health decision making. The book bridges the perspectives of scientists, engineers, and other professionals working in numerous environmental and public health fields addressing problems like toxic substances, deforestation, climate change, and loss of biological diversity, recommending sustainable solutions to these and other seemingly intractable environmental problems. The causal agents discussed include physical, chemical, and biological agents, such as per- and polyfluoroalkyl substances (PFAS), SARS-CoV-2 (the COVID-19 virus), and other emerging contaminants.
Climate Change and Extreme Events uses a multidisciplinary approach to discuss the relationship between climate change-related weather extremes and their impact on human lives. Topics discussed are grouped into four major sections: weather parameters, hydrological responses, mitigation and adaptation, and governance and policies, with each addressed with regard to past, present and future perspectives. Sections give an overview of weather parameters and hydrological responses, presenting current knowledge and a future outlook on air and stream temperatures, precipitation, storms and hurricanes, flooding, and ecosystem responses to these extremes. Other sections cover extreme weather events and discuss the role of the state in policymaking. This book provides a valuable interdisciplinary resource to climate scientists and meteorologists, environmental researchers, and social scientists interested in extreme weather.
Thermal Physics of the Atmosphere, Second Edition offers a concise and thorough introduction on how basic thermodynamics naturally leads to advanced topics in atmospheric physics. Chapters cover the basics of thermodynamics and its applications in atmospheric science and describe major applications, specifically more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation and radiative processes. The book is fully revised, featuring informative sections on radiative transfer, thermodynamic cycles, the historical context to potential temperature concept, vertical thermodynamic coordinates, dewpoint temperature, the Penman equation, and entropy of moist air. This book is a necessary guide for students (graduate, advanced undergraduate, master's level) of atmospheric science, meteorology, climate science and researchers in these fields. Members of the Royal Meteorological Society are eligible for a 35% discount on all Developments in Weather and Climate Science series titles. See the RMetS member dashboard for the discount code.
Urban Heat Island Modeling for Tropical Climates takes into account the different urban physics in tropical environments, presenting a way of UHI scaling for tropical cities. Topics include measuring, modeling and proper mitigation strategies, which account for the surface energy balance of tropics. Tropical cities are more susceptible to the effects of projected global warming because of conditions in tropical climates and the rapid growth of so many cities in this zone. The need for research on measuring, modeling and mitigation of UHI effects in tropical cities is of growing importance. This book walks through the basics of Urban Heat Islands, including causes, measurement and analysis then expands upon issues as well as the novel techniques that can be used to address issues specific to the region.
Semi-Lagrangian Advection Methods and Their Applications in Geoscience provides a much-needed resource on semi-Lagrangian theory, methods, and applications. Covering a variety of applications, the book brings together developments of the semi-Lagrangian in one place and offers a comparison of semi-Lagrangian methods with Eulerian-based approaches. It also includes a chapter dedicated to difficulties of dealing with the adjoint of semi-Lagrangian methods and illustrates the behavior of different schemes for different applications. This allows for a better understanding of which schemes are most efficient, stable, consistent, and likely to introduce the minimum model error into a given problem. Beneficial for students learning about numerical approximations to advection, researchers applying these techniques to geoscientific modeling, and practitioners looking for the best approach for modeling, Semi-Lagrangian Advection Methods and Their Applications in Geoscience fills a crucial gap in numerical modeling and data assimilation in geoscience.
The Asian Summer Monsoon: Characteristics, Variability, Teleconnections and Projection focuses on the connections between the Indian Summer and East Asian Summer Monsoons, also including the South China Sea Summer Monsoon. While these systems have profound differences, their interactions have significant impacts on the climatic regimes in the region and throughout the world. In summer, the ASM engine pumps moisture transported across thousands of miles from the Indian and Pacific Oceans to the monsoon regions, producing heavy rains over south and east Asia and its adjacent marginal seas. This book reviews the different subsystems and their impact, providing guidance to enhance prediction models.
Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change presents an integrated, collaborative approach to observing and understanding various surface temperatures from a whole-Earth perspective. The book describes the progress in improving the quality of surface temperatures across different domains of the Earth's surface (air, land, sea, lakes and ice), assessing variability and long-term trends, and providing applications of surface temperature data to detect and better understand Earth system behavior. As cooperation is essential between scientific communities, whose focus on particular domains of Earth's surface and on different components of the observing system help to accelerate scientific understanding and multiply the benefits for society, this book bridges the gap between domains. |
![]() ![]() You may like...
Wild About You - A 60-Day Devotional For…
John Eldredge, Stasi Eldredge
Hardcover
Inelastic Behaviour of Structures under…
Zenon Mroz, Dieter Weichert, …
Hardcover
R6,187
Discovery Miles 61 870
Problems of Fracture Mechanics and…
E.E. Gdoutos, C.A. Rodopoulos, …
Hardcover
R4,819
Discovery Miles 48 190
Qualification of Inspection Procedures
E. Borloo, P. Lemaitre
Hardcover
R8,995
Discovery Miles 89 950
Applying AI-Based IoT Systems to…
Bhatia Madhulika, Bhatia Surabhi, …
Hardcover
R7,619
Discovery Miles 76 190
Software Engineering in IoT, Big Data…
Haeng-kon Kim, Roger Lee
Hardcover
R5,021
Discovery Miles 50 210
|