Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
This book was first published in 1962, at a time when the meteorological study of cloud physics was gaining increasing prominence, largely due to numerous technological advances. Within this volume, Professor N. H. Fletcher introduces the less expert reader to these impressive developments in the study of cloud physics, whilst also constructing an indispensable collection of references for those with a more concentrated interest in the field. Throughout the book, Fletcher's emphasis is on microphysical processes in cloud development and the production of precipitation. He writes engagingly on the dynamics and microphysics of clouds, the microstructure of non-freezing clouds, the processes of ice formation and the artificial modification of clouds, amongst other topics. Accordingly, this book will be of great interest to any modern physicists wishing to glean an idea of how the advanced study of cloud physics was first conducted, and how the first conclusions were drawn.
The Earth's atmosphere is often portrayed as a thin and finite blanket covering our planet, separate from the emptiness of outer space. In reality, the transition is gradual and a tiny fraction of the atmophere gases is still present at the altitude of low orbiting satellites. The very high velocities of these satellites ensure that their orbital motion can still be considerably affected by air density and wind. This influence can be measured using accelerometers and satellite tracking techniques. The opening chapters of this thesis provide an excellent introduction to the various disciplines that are involved in the interpretation of these observations: orbital mechanics, satellite aerodynamics and upper atmospheric physics. A subsequent chapter, at the heart of this work, covers advances in the algorithms used for processing satellite accelerometry and Two-Line Element (TLE) orbit data. The closing chapters provide an elaborate analysis of the resulting density and wind products, which are generating many opportunities for further research, to improve the modelling and understanding of the thermosphere system and its interactions with the lower atmosphere, the ionosphere-magnetosphere system and the Sun.
This 1982 book consists of papers presented at the World Climate Research Programme study conference on land surface processes held in Greenbelt, Maryland from 5 to 10 January 1981. The papers cover the following: the state of knowledge of the sensitivity of atmospheric general circulation models on hydrology and other land surface processes: assessment of the state of knowledge of numerical modelling of hydrology and other land surface processes at the scale of atmospheric general circulation models; recommendations for research activities; establishment of data requirements for initialization, validation, and parameter evaluation. This book will continue to be of interest to atmospheric scientists, soil physicists, hydrologists and climatologists.
Modeling atmospheric processes in order to forecast the weather or future climate change is an extremely complex and computationally intensive undertaking. One of the main difficulties is that there are a huge number of factors that need to be taken into account, some of which are still poorly understood. The Factor Separation (FS) method is a computational procedure that helps deal with these nonlinear factors. In recent years many scientists have applied FS methodology to a range of modeling problems, including paleoclimatology, limnology, regional climate change, rainfall analysis, cloud modeling, pollution, crop growth, and other forecasting applications. This book is the first to describe the fundamentals of the method, and to bring together its many applications in the atmospheric sciences. The main audience is researchers and graduate students using the FS method, but it is also of interest to advanced students, researchers, and professionals across the atmospheric sciences.
Bringing together leading researchers, this 2004 volume surveys numerous developments in the fields of atmospheric turbulence and mesoscale meteorology, with particular emphasis on the areas pioneered by Douglas K. Lilly. Numerical simulation is an increasingly important tool for improving our understanding of a wide range of atmospheric phenomena. The first part of this book looks at the development of theoretical and computational analyses of atmospheric turbulent flows, and reviews research advances in this area. Chapters in the second part look at various aspects of mesoscale weather phenomena: from the numerical forecasting of individual thunderstorms to understanding how mountains affect local weather and climate. Researchers and graduate students will find the book to be an excellent resource summarizing the development of techniques as well as current and future work in the fields of atmospheric turbulence and mesoscale meteorology.
Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever increasing rate. This 2010 volume, the last in this series of three heliophysics texts, focuses on long-term variability from the Sun's decade-long sunspot cycle and considers the evolution of the planetary system over ten billion years from a climatological perspective. Topics covered range from the dynamo action of stars and planets to processes in the Earth's troposphere, ionosphere, and magnetosphere and their effects on planetary climate and habitability. Supplemented by online teaching materials, it can be used as a textbook for courses or as a foundational reference for researchers in fields from astrophysics and plasma physics to planetary and climate science.
Mesoscale weather systems are responsible for numerous natural disasters, such as damaging winds, blizzards and flash flooding. A fundamental understanding of the underlying dynamics involved in these weather systems is essential in forecasting their occurrence. This 2007 book provides a systematic approach to this subject. The opening chapters introduce the basic equations governing mesoscale weather systems and their approximations. The subsequent chapters cover four major areas of mesoscale dynamics: wave dynamics, moist convection, front dynamics and mesoscale modelling. This is an ideal book on the subject for researchers in meteorology and atmospheric science. With over 100 problems, and password-protected solutions available to instructors at www.cambridge.org/9780521808750, this book could also serve as a textbook for graduate students. Modelling projects, providing hands-on practice for building simple models of stratified fluid flow from a one-dimensional advection equation, are also described.
A lightning strike to an unprotected object or system can be disastrous - in the United States lightning is responsible for over 30% of all electric power failures, causes billions of dollars' worth of property damage, and an average of 85 fatalities a year. This accessible text describes all aspects of lightning protection and includes many illustrative drawings and photographs. The author examines the physical behavior of lightning, various types of lightning damage, the role of lightning detection and warning in effective protection, as well as options for deflecting or eliminating lightning. U.S. and international lightning protection standards are discussed. This book will be essential reading for everyone involved in the business of lightning protection, including meteorologists, atmospheric scientists, architects, engineers, and fire-safety experts. Insurance practitioners and physicians will find this reference of significant value.
Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews the physical processes in solar flares and coronal mass ejections, interplanetary shocks, and particle acceleration and transport, and considers many space weather responses in geospace. In addition to its utility as a textbook, it also constitutes a foundational reference for researchers in fields from heliophysics to climate science. Additional online resources, including lecture presentations and other teaching materials, are available at www.cambridge.org/9780521760515.
Downscaling is a widely used technique for translating information from large-scale climate models to the spatial and temporal scales needed to assess local and regional climate impacts, vulnerability, risk and resilience. This book is a comprehensive guide to the downscaling techniques used for climate data. A general introduction of the science of climate modeling is followed by a discussion of techniques, models and methodologies used for producing downscaled projections, and the advantages, disadvantages and uncertainties of each. The book provides detailed information on dynamic and statistical downscaling techniques in non-technical language, as well as recommendations for selecting suitable downscaled datasets for different applications. The use of downscaled climate data in national and international assessments is also discussed using global examples. This is a practical guide for graduate students and researchers working on climate impacts and adaptation, as well as for policy makers and practitioners interested in climate risk and resilience.
The extent and variability of seasonal snow cover are important parameters in the climate system, due to their effects on energy and moisture budgets, and because surface temperature is highly dependent on snow cover. In turn, snow cover trends serve as key indicators of climate change. Many distinct techniques have become available to study snow-climate relationships. Satellites provided the first capability for monitoring snow cover extent at continental and hemispheric scales, and there have been rapid advances in snow modeling physics to represent snow cover and snow processes in Global Climate Models (GCMs). These advances have changed the way we look at snow cover. The main goal of this book is to provide a synthesis of the prevailing state of snow-climate science that reflects this distinct perspective. This volume provides an excellent synthesis for researchers and advanced students.
The text of the Persian poet Rum - - ?, written some eight centuries ago, and reproduced at the beginning of this book is still relevant to many of our pursuits of knowledge, not least of turbulence. The text illustrates the inability people have in seeing the whole thing, the 'big picture'. Everybody looks into the problem from his/her vi- point, and that leads to disagreement and controversy. If we could see the whole thing, our understanding would become complete and there would be no cont- versy. The turbulent motion of the atmosphere and oceans, at the heart of the observed general circulation, is undoubtedly very complex and dif?cult to understand in its entirety. Even 'bare' turbulence, without rotation and strati?cation whose effects are paramount in the atmosphere and oceans, still poses great fundamental ch- lenges for understanding after a century of research. Rotating strati?ed turbulence is a relatively new research topic. It is also far richer, exhibiting a host of distinct wave types interacting in a complicated and often subtle way with long-lived - herent structures such as jets or currents and vortices. All of this is tied together by basic ?uid-dynamical nonlinearity, and this gives rise to a multitude of phen- ena: spontaneous wave emission, wave-induced transport, both direct and inverse energy scale cascades, lateral and vertical anisotropy, fronts and transport barriers, anomalous transport in coherent vortices, and a very wide range of dynamical and thermodynamical instabilities.
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.
Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climatic environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. This volume, the first in a series of three heliophysics texts, integrates such diverse topics for the first time as a coherent intellectual discipline. It emphasizes the physical processes coupling the Sun and Earth, allowing insights into the interaction of the solar wind and radiation with the Earth's magnetic field, atmosphere and climate system. It provides a core resource for advanced undergraduates and graduates, and also constitutes a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. Additional online resources, including lecture presentations and other teaching materials, are accessible at www.cambridge.org/9780521110617. Other volumes in this series: Heliophysics: Space Storms and Radiation: Causes and Effects (Volume II) Heliophysics: Evolving Solar Activity and the Climates of Space and Earth (Volume III) The complete set: Heliophysics 3 Volume Set
This volume presents a survey of our state of knowledge of the physical and dynamical processes involved in the Asian monsoon. Although traditionally the main emphasis has been on the study of the atmospheric component, it has long been known that the oceans play a vitally important part in determining the occurrence of this spectacular seasonal event. A scientific study of this phenomenon involves a detailed investigation of the dynamical processes which occur in both the atmosphere and the ocean, on timescales on up to at least a year and on spatial scales from a few hundred kilometres or so up to that of the global atmospheric and oceanic circulations. The editors present a coherent survey of each of the meteorological, oceanographic and hydrological aspects and of their implications for weather forecasting and flood prediction. Monsoon Dynamics is a timely survey of a dramatic meteorological phenomenon which will interest meteorologists, climatologists and geophysicists.
Our space age technology enables global communication, navigation, and power distribution that has given rise to our 'smart', interconnected and spacefaring world. Much of the infrastructure modern society depends on, to live on Earth and to explore space, is susceptible to space weather storms originating from the Sun. The Second Edition of this introductory textbook is expanded to reflect our increased understanding from more than a dozen scientific missions over the past decade. Updates include discussions of the rapidly expanding commercial space sector, orbital debris and collision hazards, our understanding of solar-terrestrial connections to climate, and the renewed emphasis of human exploration of the Moon and Mars. It provides new learning features to help students understand the science and solve meaningful problems, including some based on real-world data. Each chapter includes learning objectives and supplements that provide descriptions of the science and learning strategies to help students and instructors alike.
Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's Ecological Climatology: Concepts and Applications, Third Edition, builds on the concepts introduced there, and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided, to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.
The solar atmosphere, above the Sun's surface layers, reaches mega-kelvin temperatures and high levels of dynamic activity through processes involving a pervading magnetic field. This book explores one of the principal means of understanding the solar atmosphere, its ultraviolet and soft X-ray emission. The ultraviolet and X-ray spectra of the Sun's atmosphere provide valuable information about its nature - the heat and density of its various parts, its dynamics, and chemical composition. The principles governing spectral line and continuous emission, and how spectral studies lead to deductions about physical properties, are described, together with spacecraft instrumentation from Skylab, SolarMax, Yohkoh, SOHO, TRACE, and Hinode. With introductions to atomic physics and diagnostic techniques used by solar spectroscopists, a list of emission lines in ultraviolet and soft X-ray regions, and a glossary of terms, this is an ideal reference for graduate students and researchers in astrophysics and solar physics.
The physical properties of the ionized layer in the Earth's upper atmosphere enable us to use it to support an increasing range of communications applications. This book presents a modern treatment of the physics and phenomena of the high latitude upper atmosphere and the morphology of radio propagation in the auroral and polar regions. Chapters cover the basics of radio propagation and the use of radio techniques in ionospheric studies. Many investigations of high latitude radio propagation have previously only been published in Conference Proceedings and organizational reports. This book includes many examples of the behavior of quiet and disturbed high latitude HF propagation. Ample cross-referencing, chapter summaries and reference lists make this book an invaluable aid for graduate students, ionospheric physicists and radio engineers.
This is a self-contained, concise, rigorous book introducing the reader to the basics of atmospheric thermodynamics. This new edition has been brought completely up to date and reorganized to improve the quality and flow of the material. The introductory chapters provide definitions and useful mathematical and physical notes to help readers understand the basics. The book then describes the topics relevant to atmospheric processes, including the properties of moist air and atmospheric stability. It concludes with a brief introduction to the problem of weather forecasting and the relevance of thermodynamics. Each chapter contains worked examples and student exercises, with solutions available to instructors on a password protected website at www.cambridge.org/9780521796767. The author has taught atmospheric thermodynamics for over 20 years and is a highly respected researcher. This book is an ideal text for short undergraduate courses taken as part of an atmospheric science, meteorology, physics or natural science program.
This book presents the theory and applications of radiative transfer in the atmosphere. It is written for graduate students and researchers in the fields of meteorology and related sciences. The book begins with important basic definitions of the radiative transfer theory. It presents the hydrodynamic derivation of the radiative transfer equation and the principles of variance. The authors examine in detail various quasi-exact solutions of the radiative transfer equation and give a thorough treatment of the radiative perturbation theory. A rigorous treatment of Mie scattering is given, including Rayleigh scattering as a special case, and the important efficiency factors for extinction, scattering and absorption are derived. The fundamentals of remote sensing applications of radiative transfer are presented. Problems of varying degrees of difficulty are included at the end of each chapter, allowing readers to further their understanding of the materials covered in the book.
The sea breeze affects our lives in many ways. It controls our local weather, not only on the coast but also in many districts inland. Air pollution and smog, also the distribution of airborne insect pests and the spread of pollen are all controlled by the sea breeze. In the world of sport it is important to glider pilots, sailors and surfers, and balloonists. In the book we see how radar, lidar and satellite photography have helped to forecast and map sea breezes and the all-important 'sea-breeze front'. The book ends with a description of laboratory experiments mostly carried out by the author and his co-workers, and a simple summary of theoretical models. The book will be welcomed by those researching in the subject but will also be valuable to the general reader who is interested in local weather and the natural environment.
A fascinating journey through the atmosphere that will leave you breathless. With seven million early deaths a year linked to air pollution, air quality is headline news around the world. But how do we measure air pollution and what on earth is an odour panel? Why are property prices higher upwind of cities? Should we buy, hold on to, or avoid a diesel car? And will our grandchildren inherit an atmosphere worth breathing? From the atmosphere on distant planets to the stuff that gets into your lungs, from holes in the ozone layer to lazy and disappearing gases, air quality specialist and full-time breather Dr Mark Broomfield combines scientific evidence with personal stories and advice on what you can do to improve air quality, giving you the low-down on what's up high. ***PRAISE FOR EVERY BREATH YOU TAKE*** A NewBooks Book of the Month The Revelator, 13 Best Environmental Books of July 2019 'Written in an easily accessible style yet get across important facts about the world and what we are doing to it.' Peter Wadhams, author of A Farewell to Ice 'Not without raising a wry smile, the author takes us from the atmospheres of the planets to the air outside our front door... a fascinating read.' Professor Duncan Laxen, Associate of Air Quality Consultants 'Mark Broomfield s writing is just the breath of fresh air needed to lift the fog on atmospheric sciences.' Piers Forster, Professor of Physical Climate Change, University of Leeds
The Legacy of Carbon Dioxide: Past and Present Impacts covers the truly varied roles carbon dioxide has played and continues to play in the character of our planet. Chapters address the synthesis of CO2 in stars, the evolution of the atmosphere over billions of years, the chemical and physical properties of CO2 and how those influence common phenomena. How well this knowledge is understood and how it was determined, including existing uncertainties in our confidence and the stress from competing possibilities are discussed. Much of the technological jargon in various incorporated sciences has been modified to ease consumption by the non-expert. Features: Provides a historical panorama on how much the world has changed over the eons and the vast influence of carbon dioxide in these changes Follows CO2 through acidic explosive waters, volcanic episodes, sequestered reservoirs, and the chemistry of life Examines the broad scope of chemical and physical attributes carbon dioxide is capable of and their impacts Much of the technological verbiage in various incorporated sciences has been modified to ease consumption by the non-expert. This book is a valuable resource for readers interested in the science of carbon dioxide as well as natural science, the environment, scientific methods, chemistry, and geological sciences.
Complete with numerous exercise sets and solutions, this work is written for advanced students of meteorology and related sciences as well as professional meteorologists and researchers. The first part of the book presents the mathematical tools needed for a thorough understanding of the topics covered in the second. These topics include kinematics of the atmosphere; inertial and dynamic stability; turbulent systems; and novel weather prediction methods with potential for extending the forecasting range. |
You may like...
Self-focusing: Past and Present…
Robert W. Boyd, Svetlana G. Lukishova, …
Hardcover
R4,307
Discovery Miles 43 070
The Earth's Atmosphere - Its Physics and…
Kshudiram Saha
Hardcover
Computational Techniques for Modeling…
Vitaliy Prusov, Anatoliy Doroshenko
Hardcover
R5,342
Discovery Miles 53 420
|