![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Atmospheric physics
How did electrons in the high atmosphere and space around the Earth
come to acquire their speeds and energies?
'Dynamic Meteorology: A Basic Course' is an introduction to the physics of the atmosphere. Starting from the basics, it provides students with an awareness of simple mathematics and enthusiastically proceeds to provide a thorough grounding in the fundamentals of meteorology. The authors lead students to a scientifically rigorous understanding of the behaviour of weather systems such as highs, lows, fronts, jet streams and tropical cyclones. From the 'ABC' of the laws of Avogrado, Boyle and Charles to the powerful omega equation and beyond, this is a simple exposition of dynamic meteorology. Why does the wind blow along the lines of isobars rather than across them? Why are low pressure systems on the weather map more intense than high-pressure systems? Why is there much less constraint on the strength of the wind around a cyclone than an anticyclone? An international team of academic experts in meteorology answer these and many other fundamental questions with simple mathematical equations. Covering both northern and southern hemispheres, 'Dynamic Meteorology' equips students of earth and environmental sciences with proper understanding of the essential mathematics necessary to unlock the mysteries of the natural world.
The Advanced Research Workshop entitled "Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the At- sphere" was held in Abbaye de Fontevraud, France, from April 29 to May 3, 2002. The meeting involved 40 researchers from 14 countries. The goal of this meeting was to address a problem that the scienti?c community is aware of for many years. Up now, however, the so- tion for this problem is far from satisfactory. Pair e?ects are called unconventional in the title of this meeting. In speci?c spectral domains and/or geophysical conditions they are recognized to play a dominant role in the absorption/emission properties of the atmosphere. Water vapor continuum absorption is among the most prominent examples. Permanently improving accuracy of both laboratory studies and ?eld observations requires better knowledge of the spectroscopic features - tributable to molecular pairs which may form at equilibrium. The Workshop was targeted both to clarify the pending questions and, as far as feasible, to trace the path to possible answers since the underlying phenomena are yet incompletely understood and since a reliable theory is often not available. On the other hand, the lack of precise laboratory data on bimolecular absorption is often precluding the construction of reliable theoretical models. Ideally, the knowledge accumulated in the course of laboratory studies should correlate with the practical demands from those who are carrying out atmospheric ?eld measurements and space observations.
Now in its second edition,Climatology continues to provide an up-to-date stimulating and comprehensive guide to the nature of the earth's climate. It presents a synthesis of contemporary scientific ideas about atmospheric circulation. Topics covered include: -Energy systems-The hydrological cycle-General circulation, local and regional climate-Application of climate information-Use of satellite observations
"[An] approachable exploration of the jet stream ... The reader is rewarded with plenty of juicy little facts ... a good and surprisingly enjoyable trip around a weather phenomenon." - Brian Clegg, Popular Science A number of extreme weather events have struck the Northern Hemisphere in recent years, from scorching heatwaves to desperately cold winters, and from floods and storms to droughts and wildfires. These events have fuelled intense discussions in scientific conferences, government agencies, cafes, and on street corners around the world. Why are these events happening? Is this the emerging signal of climate change, and should we expect more of this? Media reports vary widely, but one mysterious agent has risen to prominence in many cases: the jet stream. The story begins on a windswept beach in Barbados, from where we follow the ascent of a weather balloon that will travel along the jet stream all around the world. From this viewpoint we observe the effect of the jet in influencing human life around the hemisphere, and witness startling changes emerging. What is the jet stream and how well do we understand it? How does it affect our weather and is it changing? These are the main questions tackled in this book. We learn about how our view of the wind has developed from Aristotle's early theories up to today's understanding. We see that the jet is intimately connected with dramatic contrasts between climate zones and has played a key historical role in determining patterns of trade. We learn about the basic physics underlying the jet and how this knowledge is incorporated into computer models which predict both tomorrow's weather and the climate of future decades. And finally, we discuss how climate change is expected to affect the jet, and introduce the vital scientific debate over whether these changes have contributed to recent extreme weather events.
Advances in Spectroscopic Monitoring of the Atmosphere provides a comprehensive overview of cutting-edge technologies and monitoring applications. Concepts are illustrated by numerous examples with information on spectroscopic techniques and applications widely distributed throughout the text. This information is important for researchers to gain an overview of recent developments in the field and make informed selections among the most suitable techniques. This volume also provides information that will allow researchers to explore implementing and developing new diagnostic tools or new approaches for trace gas and aerosol sensing themselves. Advances in Spectroscopic Monitoring of the Atmosphere covers advanced and newly emerging spectroscopic techniques for optical metrology of gases and particles in the atmosphere. This book will be a valuable reference for atmospheric scientists, including those whose focus is applying the methods to atmospheric studies, and those who develop instrumentation. It will also serve as a useful introduction to researchers entering the field and provide relevant examples to researchers and students developing and applying optical sensors for a variety of other scientific, technical, and industrial uses.
An interdisciplinary and easy-to-understand introduction to the subject, covering fundamental theory and practical applications, and using numerous operational examples. This balanced text will allow you to begin from what the radar observes and move deeper through electromagnetic scattering theory and cloud microphysics to understand and interpret data as it appears on the display. It uses illustrations and figures of real radar observations to convey concepts and theory of atmospheric processes typically observed with weather radar, as well presenting a working knowledge of the radar system itself. In addition to covering fundamentals of scattering and atmospheric physics, topics include system hardware, signal processing, and radar networks. This is the perfect tool for scientists and engineers working on weather radars or using radars and their data, as well as senior undergraduate and graduate students studying weather radars.
The book covers topics confined to dynamical coupling processes in the Earth's lower and middle atmosphere in order to examine progress in a relatively focused area. Nevertheless, the results span spatial scales from molecular to global, and temporal scales from seconds to decades. The unifying theme in all areas is the strong interactions occurring between various scales of motion. The articles represent contributions to a NATO Advanced Research Workshop held in Norway in May 1992. They are written by some of the leading experts in the field and are of interest to specialists in the field of atmospheric dynamics as well as to students at graduate and doctorate levels.
A century ago, Lewis Fry Richardson introduced the concept of energy cascades in turbulence. Since this conceptual breakthrough, turbulence has been studied in diverse systems and our knowledge has increased considerably through theoretical, numerical, experimental and observational advances. Eddy turbulence and wave turbulence are the two regimes we can find in nature. So far, most attention has been devoted to the former regime, eddy turbulence, which is often observed in water. However, physicists are often interested in systems for which wave turbulence is relevant. This textbook deals with wave turbulence and systems composed of a sea of weak waves interacting non-linearly. After a general introduction which includes a brief history of the field, the theory of wave turbulence is introduced rigorously for surface waves. The theory is then applied to examples in hydrodynamics, plasma physics, astrophysics and cosmology, giving the reader a modern and interdisciplinary view of the subject.
Instabilities are present in all natural fluids from rivers to atmospheres. This book considers the physical processes that generate instability. Part I describes the normal mode instabilities most important in geophysical applications, including convection, shear instability and baroclinic instability. Classical analytical approaches are covered, while also emphasising numerical methods, mechanisms such as internal wave resonance, and simple `rules of thumb' that permit assessment of instability quickly and intuitively. Part II introduces the cutting edge: nonmodal instabilities, the relationship between instability and turbulence, self-organised criticality, and advanced numerical techniques. Featuring numerous exercises and projects, the book is ideal for advanced students and researchers wishing to understand flow instability and apply it to their own research. It can be used to teach courses in oceanography, atmospheric science, coastal engineering, applied mathematics and environmental science. Exercise solutions and MATLAB (R) examples are provided online. Also available as Open Access on Cambridge Core.
Compelling . . . Clark's enthusiasm shines through on every page' Sunday Times 'An engaging and lively history' Financial Times __________ A thin, invisible layer of air surrounds the Earth, sustaining all known life on the planet and creating the unique climates and weather patterns that make each part of the world different. In Firmament, atmospheric scientist and science communicator Simon Clark offers a rare and accessible tour of the ins and outs of the atmosphere and how we know what we know about it. From the workings of its different layers to why carbon dioxide is special, from pioneers like Pascal to the unsung heroes working in the field to help us understand climate change, Firmament introduces us to an oft-overlooked area of science and not only lays the ground work for us to better understand the debates surrounding the climate today, but also provides a glimpse of the future that is possible with this knowledge in hand. __________
"Encyclopedia of Atmospheric Sciences, 2nd Edition"is an authoritative resource covering all aspects of atmospheric sciences, including both theory and applications. With more than 320 articles and 1,600 figures and photographs, this revised version of the award-winning first edition offers comprehensive coverage of this important field. The six volumes in this set contain broad-ranging articles on topics such as atmospheric chemistry, biogeochemical cycles, boundary layers, clouds, general circulation, global change, mesoscale meteorology, ozone, radar, satellite remote sensing, and weather prediction. The "Encyclopedia" is an ideal resource for academia,
government, and industry in the fields of atmospheric, ocean, and
environmental sciences. It is written at a level that allows
undergraduate students to understand the material, while providing
active researchers with the latest information in the field.
Geophysical fluid dynamics examines the dynamics of stratified and turbulent motion of fluids in the ocean and outer core, and of gases in the atmosphere. This book explains key notions and fundamental processes of the dynamics of large- and medium-scale atmospheric and oceanic motions from the unifying viewpoint of the rotating shallow water model. The model plays a distinguished role in geophysical fluid dynamics. It has been used for about a century for conceptual understanding of various phenomena, for elaboration of approaches and methods to be used later in more complete models, for development and testing of numerical codes, and for many other purposes. In spite of its simplicity, the model grasps essential features of the complete "primitive equations" models, being their vertically averaged version, and gives an intuitive representation and clear vision of principal dynamical processes. This book is a combination of a course on geophysical fluid dynamics (Part 1), with explanations and illustrations of fundamentals, and problems, as well as a more advanced treatise of a range of principal dynamical phenomena (Part 2), including recently arisen approaches and applications (Part 3). Mathematics and physics underlying dynamical phenomena are explained, with necessary demonstrations. Yet, an important goal of the book is to develop the reader's physical intuition and qualitative insights.
This book describes mathematical techniques for interpreting measurements of greenhouse gases in order to learn about their sources and sinks. The majority of the book gives general descriptions of techniques, but the last third covers the applications to carbon dioxide, methane, chlorofluorocarbons and other gases implicated in global change.
Revised and updated in 2000, Basic Physical Chemistry for the Atmospheric Sciences provides a clear, concise grounding in the basic chemical principles required for studies of atmospheres, oceans, and earth and planetary systems. Undergraduate and graduate students with little formal training in chemistry can work through the chapters and the numerous exercises within this book before accessing the standard texts in the atmospheric chemistry, geochemistry, and the environmental sciences. The book covers the fundamental concepts of chemical equilibria, chemical thermodynamics, chemical kinetics, solution chemistry, acid and base chemistry, oxidation-reduction reactions, and photochemistry. In a companion volume entitled Introduction to Atmospheric Chemistry (2000, Cambridge University Press) Peter Hobbs provides an introduction to atmospheric chemistry itself, including its applications to air pollution, acid rain, the ozone hole, and climate change. Together these two books provide an ideal introduction to atmospheric chemistry for a variety of disciplines.
Recent observational results from space- and ground-based telescopes have demonstrated that a unified approach to the relationships between solar and stellar magnetism is necessary to advance our understanding of magnetic fields. The Proceedings of IAU Symposium 354 present recent results and discussions of emerging topics, including: magnetic field diagnostics using high-resolution observation; initial data from ALMA, Chinese Radio Spectroheliograph and other instruments; the detection of stellar magnetospheres; and the detailed mapping of magnetic fields on the surface of stars using new unique instrumentation. These observations stimulate comparisons of solar and stellar results, and improve our understanding of how surface magnetic structures and their evolution are related to the generation of magnetic fields by dynamos in solar and stellar interiors. This volume benefits graduate students and researchers interested in the recent advances and key problems of solar and stellar magnetic fields, and their impacts on planetary atmospheres.
Cloud research is a rapidly developing branch of climate science that's vital to climate modelling. With new observational and simulation technologies our knowledge of clouds and their role in the warming climate is accelerating. This book provides a comprehensive overview of research on clouds and their role in our present and future climate, covering theoretical, observational, and modelling perspectives. Part I discusses clouds from three different perspectives: as particles, light and fluid. Part II describes our capability to model clouds, ranging from theoretical conceptual models to applied parameterised representations. Part III describes the interaction of clouds with the large-scale circulation in the tropics, mid-latitudes, and polar regions. Part IV describes how clouds are perturbed by aerosols, the land-surface, and global warming. Each chapter contains end-of-chapter exercises and further reading sections, making this an ideal resource for advanced students and researchers in climatology, atmospheric science, meteorology, and climate change.
During the past decade, the science of dynamic meteorology has continued its rapid advance. The scope of dynamic meteorology has broadened considerably. Much of the material is based on a two-term course for seniors majoring in atmospheric sciences. This book presents a cogent explanation of the fundamentals of
meteorology and explains storm dynamics for weather-oriented
meteorologists. It discusses climate dynamics and the implications
posed for global change. The new edition has added a companion
website with MATLAB exercises and updated treatments of several key
topics. NEW IN THIS EDITION A companion website with MATLAB(r) exercises and demonstrationsUpdated treatments on climate dynamics, tropical meteorology, middle atmosphere dynamics, and numerical prediction
The atmosphere is the thin, diffuse fluid that envelops the Earth's surface. Despite its apparent fragility, the existence of this fluid is vital for human and other life on Earth. In this Very Short Introduction Paul Palmer describes the physical and chemical characteristics of different layers in the atmosphere, and shows how the interactions where the atmosphere is in contact with land, ocean, and ice affect its observed physical and chemical properties. He also looks at how movement in the atmosphere, driven by heat from the sun, transports heat from lower latitudes to higher latitudes, and is a fundamental feature of the general circulation in the atmosphere. Finally, Palmer presents an overview of the types of measurements used to understand different parts of the atmosphere, and identifies the future challenges for atmospheric scientists. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
The sixth edition of a bestseller, Air Quality provides students with a comprehensive overview of air quality, the science that continues to provide a better understanding of atmospheric chemistry and its effects on public health and the environment, and the regulatory and technological management practices employed in achieving air quality goals. Maintaining the practical approach that has made previous editions popular, the chapters have been reorganized, new material has been added, less relevant material has been deleted, and new images have been added, particularly those from Earth satellites.
In recent decades, great progress has been made in our understanding of zonal jets across many subjects - atmospheric science, oceanography, planetary science, geophysical fluid dynamics, plasma physics, magnetohydrodynamics, turbulence theory - but communication between researchers from different fields has been weak or non-existent. Even the terminology in different fields may be so disparate that researchers working on similar problems do not understand each other. This comprehensive, multidisciplinary volume will break cross-disciplinary barriers and aid the advancement of the subject. It presents a state-of-the-art summary of all relevant branches of the physics of zonal jets, from the leading experts. The phenomena and concepts are introduced at a level accessible to beginning graduate students and researchers from different fields. The book also includes a very extensive bibliography.
Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.
Presenting a comprehensive discussion of general circulation models of the atmosphere, this book covers their historical and contemporary development, their societal context, and current efforts to integrate these models into wider Earth-system models. Leading researchers provide unique perspectives on the scientific breakthroughs, overarching themes, critical applications, and future prospects for atmospheric general circulation models. Key interdisciplinary links to other subject areas such as chemistry, oceanography and ecology are also highlighted. This book is a core reference for academic researchers and professionals involved in atmospheric physics, meteorology and climate science, and can be used as a resource for graduate-level courses in climate modeling and numerical weather prediction. Given the critical role that atmospheric general circulation models are playing in the intense public discourse on climate change, it is also a valuable resource for policy makers and all those concerned with the scientific basis for the ongoing public-policy debate.
Mounting evidence that human activities are substantially modifying the Earth's climate brings a new imperative to the study of the ocean's large-scale circulation. This textbook provides a concise but comprehensive introduction to the theory of large-scale ocean circulation, as it is currently understood and established. Students and instructors will benefit from the carefully chosen chapter-by-chapter exercises. This advanced textbook is invaluable for graduate students and researchers in the fields of oceanic, atmospheric and climate sciences, and other geophysical scientists, as well as physicists and mathematicians with a quantitative interest in the planetary fluid environment. |
You may like...
Climate Change Science - Causes, Effects…
David K. Ting, Jacqueline A. Stagner
Paperback
R3,024
Discovery Miles 30 240
Smart, Resilient and Transition Cities…
Adriana Galderisi, Angela Colucci
Paperback
R2,575
Discovery Miles 25 750
Climate Observations, Volume 3 - Data…
Peter Domonkos, Robert Toth, …
Paperback
R2,941
Discovery Miles 29 410
|