Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Transport technology > Automotive technology
This proceedings volume gathers outstanding papers submitted to the 2016 SAE-China Congress, the majority of which are from China, the biggest car maker as well as most dynamic car market in the world. The book includes insights into the current challenges that the whole industry is currently facing, and it offers possible solutions to problems such as emission controls, environmental pollution, the energy shortage, traffic congestion and sustainable development. It also presents the latest technical achievements in the automotive industry. Many of the approaches it presents can help technicians to solve the practical problems that most affect their daily work.
The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software development - Control of gasoline engines, control of air/fuel, ignition, knock, idle, coolant, adaptive control functions - Control of diesel engines, combustion models, air flow and exhaust recirculation control, combustion-pressure-based control (HCCI), optimization of feedforward and feedback control, smoke limitation and emission control This book is an introduction to electronic engine management with many practical examples, measurements and research results. It is aimed at advanced students of electrical, mechanical, mechatronic and control engineering and at practicing engineers in the field of combustion engine and automotive engineering.
This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen chain, tree, and isolated vertex and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATLAB(r)/Simulink(r) simulations that demonstrate the effectiveness of the methods detailed. Readers interested in aircraft, vehicle control or various forms of walking robot will be able to learn from "Underactuated Mechanical Systems" how to estimate the degree of complexity required in the control design of several classes of underactuated systems and proceed on to further generate more systematic control laws according to its methods of analysis."
This book introduces the issues and problems that arise when implementing smart energy management for sustainable manufacturing in the automotive manufacturing industry and the analytical tools and applications to deal with them. It uses a number of illustrative examples to explain energy management in automotive manufacturing, which involves most types of manufacturing technology and various levels of energy consumption. It demonstrates how analytical tools can help improve energy management processes, including forecasting, consumption, and performance analysis, emerging new technology identification as well as investment decisions for establishing smart energy consumption practices. It also details practical energy management systems, making it a valuable resource for professionals involved in real energy management processes, and allowing readers to implement the procedures and applications presented.
More than any other artifact of modern technology, the automobile has shaped our physical, social, and cultural environment. At the same time, the history of the automobile demonstrates how decisions made by governments, entrepreneurs, and the general public have strongly affected the automobile's evolution. Cars and Cultures provides a succinct yet comprehensive history of the automobile. While the book highlights the technical changes that altered the appearance and performance of automobiles, it also explores the political, economic, social, and cultural forces that shaped the car's development. Because of the wide-ranging impact of the automobiles, no history would be complete without covering the components essential for our automotive-based transportation system--roads and highways, gasoline production, traffic laws, governmental regulation-- as well as the other aspects of our social and cultural history that were deeply affected by the history of the automobile--labor unions, suburbanization, travel and recreation, and the fast-food industry. Anyone fascinated by the history of the automobile will find much of interest in this volume. Students and general readers will find such information as: BLOf the 4,192 cars produced in the U.S. in 1900, 1,681 were steam-powered, 1,575 were electrics, and only 936 used internal combustion engines BLGeneral John Pershing organized a convoy of 79 trucks that crossed the U.S. from Washington to San Francisco in 1919. Hampered by the poor state of the roads upon which they traveled, the trucks averaged only fifty miles a day, and needed 56 days to complete their journey. BLIn 1960, the entire Japanese automobile industry exported fewer than1000 cars to the United States; by the early 1980s, it became such a threat to the U.S. auto industry that the U.S. government limited Japanese imports to 1.65 million cars per year. BLAlthough focused on the United States, it is global in scope, with comparisons to how the automobile developed in Europe, Japan, and elsewhere. The volume includes a chronology of the automobile's evolution, a glossary of technical terms, a selected bibliography, and more than 20 photographs and illustrations.
The rapidly growing need for mobility has brought with it a major challenge for improvement in the operation and utilization of automotive systems. The economical, environmental and safety constraints imposed by the increase in the number of road vehicles and subsequent government policies also require substantial product development through the application of infor mation technology. This involves the enhancement of vehicle informatics and telematic systems with additional sensors and systems. The advance in the design and development of automotive sensory systems is so rapid that there is urgent need for the experts involved in the technology to work together to provide a reference book for the engineer of today and tomorrow. This motivated me to spend two years researching the topics and the basis on which such a book should be written. The result is the present compilation of the work of international experts on the state-of-the-art in the field of automotive sensory systems. Thus, a unique collection has been created for the reference of all those concerned with, or interested in, the design and development of modern, safe and intelligent vehicles. Although this book is intended for engineers, managers, scientists, academicians and policy makers, students should also find it valuable. To meet the requirements of students the basics are explained in simple terms; however, it is hoped that others will appreciate this approach, since most of us are well aware that gaps remain in our knowledge of the elements of our profession."
This Proceedings volume gathers outstanding papers submitted to Proceedings of China SAE Congress 2018: Selected Papers, the majority of which are from China - the largest car-maker as well as most dynamic car market in the world. The book covers a wide range of automotive topics, presenting the latest technical advances and approaches to help technicians solve the practical problems that most affect their daily work. It is intended for researchers, engineers and postgraduate students in the fields of automotive engineering and related areas.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: *Automotive Reliability Technology *Lightweight Design Technology *Design for Recycling *Dynamic Modeling *Simulation and Experimental Validation *Virtual Design, Testing and Validation *Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
Microsystems are an important success factor in the automobile industry. In order to fulfil the customers requests for safety convenience and vehicle economy, and to satisfy environmental requirements, microsystems are becoming indispensable. Thus a large number of microsystem applications came into the discussion. With the international conference AMAA 2002, VDI/VDE-IT provides a platform for the discussion of all MST relevant components for automotive applications. The conference proceedings gather the papers by authors from automobile suppliers and manufacturers.
Universal vehicular communication promises many improvements in terms of ac- dent avoidance and mitigation, better utilization of roads and resources such as time and fuel, and new opportunities for infotainment applications. However, before widespread acceptance, vehicular communication must meet challenges comparable to the trouble and disbelief that accompanied the introduction of traf c lights back then. The rst traf c light was installed in 1868 in London to signal railway, but only later, in 1912, was invented the rst red-green electric traf c light. And roughly 50 years after the rst traf c light, in 1920, the rst four-way traf c signal comparable to our today's traf c lights was introduced. The introduction of traf c signals was necessary after automobiles soon became prevalent once the rst car in history, actually a wooden motorcycle, was constructed in 1885. Soon, the scene became complicated, requiring the introduction of the "right-of-way" philosophy and later on the very rst traf c light. In the same way the traf c light was a necessary mean to regulate the beginning of the automotive life and to protect drivers, passengers, as well as pedestrians and other inhabitants of the road infrastructure, vehicular communication is necessary to accommodate the further growth of traf c volume and to signi cantly reduce the number of accidents.
Gain a Deeper Understanding of Mechanical Fastening: Assemble More Efficient and Competitive Products A good design, quality parts, and properly executed assembly procedures and processes result in well-fastened assemblies. Utilizing a combined knowledge of mechanical assembly engineering and fastening technology, Mechanical Fastening, Joining, and Assembly, Second Edition provides readers with a solid understanding of mechanical fastening, joining, and assembly information. Based on the author's experience in the field, this updated mechanical arts guide and reference chronicles the technical progress since the first edition was published more than a decade ago. Provides Case Studies Showing Real-World Applications for Commonly Used Assemblies The second edition addresses recent trends in the industry, and looks at new fastening technologies used in aerospace, automotive, and other key areas. It explains the fastening function in depth, and describes the types of fastening approaches that can be used effectively. The revised text expands on the presentation and review of fastened components, detailing the assembly, design, manufacturing, and installation of fastener products and procedures. It covers specific joining applications, including vibration, standard, and special materials; details environmental factors; and provides useful reference charts for future use. What's New in the Second Edition: Provides an up-to-date selection of technologies Contains practical approaches to modern fastener technology Reviews engineering fundamentals with a focus on their application in the fastener industry Includes a section on fastener statics Expands on fastener manufacturing processes, most specifically cold heading and roll threading Adds fastener dynamics to draw attention to forces in motion (wind turbine hub turning in strong winds) and fastener strength of materials Extends review of the economics of fastening and provides some tools for engineering economics Examines the difference in static and dynamic strengths Considers fastener materials in this new century, provides some observations about the fastener laboratory, and discusses electrical theory Addresses sustainability, application product management, thermodynamics, energy systems, and new thought maps for application analysis Takes a look at a favorite application, D&D 100, and more Mechanical Fastening, Joining, and Assembly, Second Edition is accessible to novices and experienced technologists and engineers, and covers the latest in fastener technology and assembly training.
With a Haynes manual, you can do it yourself...from simple maintenance to basic repairs. Haynes writes every book based on a complete teardown of the vehicle. We learn the best ways to do a job and that makes it quicker, easier and cheaper for you. Our books have clear instructions and plenty of photographs that show each step. Whether you're a beginner or a pro, you can save big with Haynes! - Step-by-step procedures - Easy-to-follow photos - Complete troubleshooting section - Valuable short cuts - Color spark plug diagnosis Complete coverage for your Fiat 124 Sport Couple & Spider (see years covered): - Routine Maintenance - Tune-up procedures - Engine repair - Cooling and heating - Air Conditioning - Fuel and exhaust - Emissions control - Ignition - Brakes - Suspension and steering - Electrical systems - Wiring diagrams
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 7: Vehicle Design and Testing (I) focuses on: *Vehicle Performance Development *Vehicle Integration Platformized and Universal Design *Development of CAD /CAE/CAM and CF Methods in Automotive Practice *Advanced Chassis, Body Structure and Design *Automotive Ergonomic, Interior and Exterior Trim Design *Vehicle Style and Aerodynamic Design *New Materials and Structures Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
The aim of this book is to present pedestrian injuries from a biomechanical perspective. We aim to give a detailed treatment of the physics of pedestrian impact, as well as a review of the accident databases and the relevant injury criteria used to assess pedestrian injuries. A further focus will be the effects on injury outcome of (1) pedestrian/vehicle position and velocity at impact and (2) the influence of vehicle design on injury outcome. Most of the content of this book has been published by these and other authors in various journals, but this book will provide a comprehensive treatment of the biomechanics of pedestrian impacts for the first time. It will therefore be of value to new and established researchers alike.
The volumes includes selected and reviewed papers from the 2nd ETA Conference on Energy and Thermal Management, Air Conditioning and Waste Heat Recovery in Berlin, November 22-23, 2018. Experts from university, public authorities and industry discuss the latest technological developments and applications for energy efficiency. Main focus is on automotive industry, rail and aerospace.
Motorcycle Engineering is a primer and technical introduction for anyone interested in motorcycles, motorcycling, and the motorcycle industry. It provides insight into how motorcycles are made and operated. Motorcycles, mopeds, and scooters are important factors in world transport, and they are playing an increasingly important role in transport policy as we move towards greater environmental awareness. Motorcycles and scooters give freedom of personal transport that enable large commuter distances to be covered quickly and easily. Their small footprint offers easy storage as only minimal space is required. To celebrate the importance of motorcycles on the world stage, a brief history is included with a detailed timeline detailing the development of the motorcycle alongside major world events. Written in an accessible fashion, no previous knowledge of engineering or technology is required, as all technical terms are readily explained and a glossary and abbreviation list is included. Whether you are an enthusiast, racer, student, or industry professional, you will surely find this an enjoyable read and a handy reference book on your shelf.
This book was developed using material from teaching courses on fluid mechanics, high-speed flows, aerodynamics, high-enthalpy flows, experimental methods, aircraft design, heat transfer, introduction to engineering, and wind engineering. It precisely presents the theoretical and application aspects of the terms associated with these courses. It explains concepts such as cyclone, typhoon, hurricane, and tornado, by highlighting the subtle difference between them. The text comprehensively introduces the subject vocabulary of fluid mechanics for use in courses in engineering and the physical sciences. This book * Presents the theoretical aspects and applications of high-speed flows, aerodynamics, high-enthalpy flows, and aircraft design. * Provides a ready reference source for readers to learn essential concepts related to flow physics, rarefied, and stratified flows. * Comprehensively covers topics such as laser Doppler anemometer, latent heat of fusion, and latent heat of vaporisation. * Includes schematic sketches and photographic images to equip the reader with a better view of the concepts. This is ideal study material for senior undergraduate and graduate students in the fields of mechanical engineering, aerospace engineering, flow physics, civil engineering, automotive engineering, and manufacturing engineering.
Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple -SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels of accuracy required for fluid level measurement in dynamic environments. Aimed toward graduate and postgraduate students, researchers, and engineers studying applications of artificial intelligence, readers will learn about a measurement system that is based on a single ultrasonic sensor which can achieve the high levels of accuracy required for fluid level measurement in dynamic environments.
Optimization of combustion processes in automotive engines is a key factor in reducing fuel consumption in conventional and advanced gasoline and diesel engines. This volume investigates and describes flow and combustion processes in diesel and gasoline engines. It consists of eight chapters written by world experts from industry, government laboratories and academia. Each of the chapters is self-contained and, therefore, independent from the other in that it covers its central theme in depth, although prior knowledge of the fundamentals remains a prerequisite. The book bridges a serious gap between conventional textbooks and the significant technological breakthroughs presented in worldwide conferences during the last ten years on direct-injection gasoline engines, advanced diesels and homogeneous-charge compression-ignition engines. As such, it is an essential reference text for engineers involved in research and development in global automotive and consultancy companies, research engineers involved in fundamental and applied research on various aspects of the flow, mixture preparation and combustion in reciprocating engines. The authors are eminent researchers from universities and industry.
This book gathers the best articles presented by researchers and industrial experts at the International Conference on "Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)". The papers discuss new design concepts, analysis and manufacturing technologies, with an emphasis on achieving improved performance by downsizing; improving the weight-to-strength ratio, fuel efficiency, and operational capability at room and elevated temperatures; reducing wear and tear; and addressing NVH aspects, while balancing the challenges of Euro IV/Barat Stage IV emission norms and beyond, greenhouse effects, and recyclable materials. The innovative methods discussed here offer valuable reference material for educational and research organizations, as well as industry, encouraging them to pursue challenging projects of mutual interest.
Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia.
TEODOR GABRIEL CRAINIC, DIRECTOR The Centre for Research on Transportation (C.R.T.) was founded in 1971 by the Universite de Montreal. From 1988 on, it is jointly managed by the Universite de Montreal and its affiliated schools, the Ecole des Hautes Etudes Commerciales and Ecole Poly technique. Professors, students and researchers from many institutions in the Montreal area join forces at the C.R.T. to analyze transportation, logistics and telecommunication systems from a multidisciplinary perspective. The C.R.T. pursues three major, complementary objectives: training of high-level specialists; the advancement of knowledge and technology; the transfer of technology towards industry and the public sector. Its main field of expertise is the develop ment of quantitative and computer-based models and methods for the analysis of urban, regional and intercity transportation networks, as well as telecommunication systems. This applies to the study of passenger and commodity flows, as well as to the socioeconomic aspects of transportation: policy, regulation, economics. The twenty-fifth anniversary of the C.R.T. offered the opportunity to evaluate past accomplishments and to identify future trends and challenges. Five colloquia were thus organized on major research and application themes that also reflected our main research areas. They gathered together internationally renowned researchers who linked recent scientific and technological advances to modeling and methodological challenges waiting to be tackled, particularly concerning new problems and applica tions, and the increasingly widespread use of new technologies."
Nonlinear and Hybrid Systems in Automotive Control will enable researchers, control engineers and automotive engineers to understand the engine and whole-vehicle models necessary for control. A new generation of control strategies has become necessary because of the increasingly rigorous requirements of vehicle and engine control systems for accuracy, ride comfort, safety, complexity, functionality and emission levels. In contrast with earlier systems, these new control systems are based on dynamic physical models and the principles of advanced nonlinear control. The contributors to this work come from both academic and industrial backgrounds and the subjects they cover include: suspension control; modelling of driver position and behaviour; anti-lock braking systems and optimal braking control; stability analysis of hybrid systems; Hamiltonian formulation of bond graphs; approximation of maximal controlled safe sets for hybrid systems. This book should be of use to academic researchers and graduate students as well as to engineers in the automotive industry.
Ground Vehicle Dynamics is devoted to the mathematical modelling and dynamical analysis of ground vehicle systems composed of the vehicle body, the guidance and suspension devices and the corresponding guideway. Automobiles on uneven roads and railways on flexible tracks are prominent representatives of ground vehicle systems. All these different kinds of systems are treated in a common way by means of analytical dynamics and control theory. In addition to a detailed modelling of vehicles as multibody systems, the contact theory for rolling wheels and the modelling of guideways by finite element systems as well as stochastic processes are presented. As a particular result of this integrated approach the state equations of the global systems are obtained including the complete interactions between the subsystems considered as independent modules. The fundamentals of vehicle dynamics for longitudinal, lateral and vertical motions and vibrations of automobiles and railways are discussed in detail. |
You may like...
Michigan's C. Harold Wills - The Genius…
Alan Naldrett, Lynn Lyon Naldrett
Paperback
|