![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Automotive technology
Thematerialsusedinmanufacturingtheaerospace, aircraft, automobile, andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable mann
Haynes offers the best coverage for cars, trucks, vans, SUVs and motorcycles on the market today. Each manual contains easy to follow step-by-step instructions linked to hundreds of photographs and illustrations. Included in every manual: troubleshooting section to help identify specific problems; tips that give valuable short cuts to make the job easier and eliminate the need for special tools; notes, cautions and warnings for the home mechanic; color spark plug diagnosis and an easy to use index.
The objective of this Workshop is to confront models, methods and tools developed within the projects with the ongoing research worldwide and to provide an environment for fruitful exchange of ideas. The main topics are: 1. Advanced human models in transportation. 2. Human Errors and Risk Assessment in design processes of assistance systems. 3. Methods and tools to prevent erroneous behaviour to mitigate its consequences. The Workshop will consist of 10 keynote lectures as well as approximately 28 peer reviewed papers.
Looking back when the International Forum on Advanced Microsystems for Automotive Application (AMAA) started, enormous progress has been made in reducing casualties, emissions and in increasing comfort and performance. Microsystems in many cases provided the key functions for this progress. Although the issues the event concentrated on didn t change significantly (safety, powertrain, comfort, etc.), considerable shifts of technological paradigms and approaches can be stated. The future of microsystems will consist of integrated smart systems which are able to diagnose a situation, to describe and to qualify it. They will be able to identify and mutually address each other. They will be predictive and therefore they will be able to decide and help to decide. Smart systems will enable the automobile to interact with the environment, they will perform multiple tasks and assist a variety of activities. Smart systems will be highly reliable, often networked and energy autonomous. There is a coincidence of the AMAA objectives and those of EPoSS, the European Technology Platform on Smart Systems Integration, contributing intensively to the development of automotive-specific smart systems. You will find a series of the EPoSS items in the programme of the 11th AMAA, which continues to be a unique exchange forum for companies in the automotive value chain. The publication in hand also reflects these issues. It is a cut-out of new technological priorities in the area of microsystems-based smart devices and opens up a mid-term perspective of future smart systems applications in automobiles. Additional information is available on www.amaa.de"
This book offers a systematic and thorough philosophical analysis of the ways in which driving automation crosses path with ethical values. Upon introducing the different forms of driving automation and examining their relation to human autonomy, it provides readers with in-depth reflections on safety, privacy, moral judgment, control, responsibility, sustainability, and other ethical issues. Driving is undoubtedly a moral activity as a human act. Transferring it to artificial agents such as connected and automated vehicles necessarily raises many philosophical questions. When driving is automated, what happens to its ethical dimensions? Could artificial agents accomplish ethical objectives on our behalf, take moral decisions in our place, and drive us into a more ethical transportation future? In doing so, would they be "moral" as we are or in a way that is similar to, but also remarkably different from, our own? And what role is yet to be played by human responsibility and commitment? The book addresses these questions with the aim of stimulating an interdisciplinary dialogue between different stakeholders. They include automotive engineers, computer scientists, and moral philosophers, as well as industry representatives, policymakers, regulators, transportation experts, and the general public. Indeed, connected and automated vehicles will not take the high road for us . We must drive them there.
Power System Operation and Planning under Uncertainty provides the mathematical models and tools needed to plan and operate future power systems. It discusses the challenging task of the integration of a high penetration of renewable energies and electric vehicles within existing power systems. This book explores the uncertainty faced by power systems that is associated with the evolution of capital costs, technical developments of immature renewable technologies and energy storage systems, the number of electrical vehicles, and the participation of electricity end users in demand response programs. It helps provide solutions, and points to areas of further research that will help resolve. The models, tools and techniques described in this book are of interest for researches of energy systems, professionals working as power system planners or operators, and for graduate students in power engineering and operations research.
Electromagnetic compatibility (EMC) deals with the unintentional propagation and reception of electromagnetic energy which may cause disturbances or even physical damage in electronic or electromechanical systems. With the increase in number and density of electronic devices and systems in modern vehicles, EMC has become a substantial concern and a key cause of malfunction of automotive electronics. This book explores electromagnetic compatibility in the context of automotive electronics, with a close relation to functional safety as required by ISO 26262. Topics covered include an introduction to automotive electronics; electrical drives and charging infrastructure; fundamentals of functional safety; fundamentals of EMC, signal and power integrity; the legal framework; EMC design at the ECU Level; EMC design at the system level and in special subsystems; modelling and simulation; and test and measurement for EMC.
'Automotive Computer Controlled Systems' explains the fundamental principles of engineering that lie behind the operation of vehicle electronic systems. Having obtained this knowledge, the reader will be able to make full use of the diagnostic equipment which is currently available. The book builds on the concepts contained in Vehicle Electronic Systems and Fault Diagnosis and gives clear steps to fault diagnosis and subsequent repair of the vehicle's electronic systems. The author discusses electronics only within the context of the vehicle systems under consideration, and thus keeps theory to a minimum. Allan Bonnick has written articles for several transport/vehicle
journals and carries out consultancy work for the Institute of Road
Transport Engineers. In addition, he has had many years teaching
experience and is ideally placed to write this informative
guide.
Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.
This handbook dicussess tyre-road contact forces generated by heavy vehicles covering their influence on road surface and bridge response and damage, as well as ways of regulating and improving vehicles so as to minimize road damage.;The main incentive for understanding vehicle-road interaction is the possibility of reducing the road damage caused by heavy vehicles and the very high associated costs. This may be achieved by highway authorities, through improved design and construction of roads; by government agencies, through regulations intended to encourage the use of more "road-friendly" vehicles; or by vehicle engineers, through design of improved vehicle configurations and suspensions, which minimize road damage.;The book provides a unified mechanistic approach to the entire subject, covering vehicle dynamics; dynamic tyre forces; weigh-in-motion; pavement and bridge response; damage mechanisms of paving materials; vehicle-guideway interaction; suspension design to minimize road damage; and assessing road damaging potential of vehicles for regulatory purposes. It includes 25 literature reviews, covering topics from asphalt deformation to weigh-in-motion, and citing over 500 references. In addition, it discusses both the fundamental mechanics of the mechanical and civil engineering systems, as well as practical and implementation issues.
FROM THE INTRODUCTION
Decision-Making Techniques for Autonomous Vehicles provides a general overview of control and decision-making tools that could be used in autonomous vehicles. Motion prediction and planning tools are presented, along with the use of machine learning and adaptability to improve performance of algorithms in real scenarios. The book then examines how driver monitoring and behavior analysis are used produce comprehensive and predictable reactions in automated vehicles. The book ultimately covers regulatory and ethical issues to consider for implementing correct and robust decision-making. This book is for researchers as well as Masters and PhD students working with autonomous vehicles and decision algorithms.
This beautifully photographed volume surveys the Japanese motorcycles which have helped steer the American cycling habit since the late 1950s. Examples of first models, last models, and the most unusual Japanese machines to hit American shores are covered in detail with over 450 color photos and accompanying text. Almost every cycle shown is 100 percent original or has been painstakingly returned to its original form. The first machines from Japan were simple, lightweight units that could be ridden by anyone, and opened up new roads for the neophyte rider. As the years progressed, the offerings from the Japanese makers became the ones to beat.
This book was developed using material from teaching courses on fluid mechanics, high-speed flows, aerodynamics, high-enthalpy flows, experimental methods, aircraft design, heat transfer, introduction to engineering, and wind engineering. It precisely presents the theoretical and application aspects of the terms associated with these courses. It explains concepts such as cyclone, typhoon, hurricane, and tornado, by highlighting the subtle difference between them. The text comprehensively introduces the subject vocabulary of fluid mechanics for use in courses in engineering and the physical sciences. This book * Presents the theoretical aspects and applications of high-speed flows, aerodynamics, high-enthalpy flows, and aircraft design. * Provides a ready reference source for readers to learn essential concepts related to flow physics, rarefied, and stratified flows. * Comprehensively covers topics such as laser Doppler anemometer, latent heat of fusion, and latent heat of vaporisation. * Includes schematic sketches and photographic images to equip the reader with a better view of the concepts. This is ideal study material for senior undergraduate and graduate students in the fields of mechanical engineering, aerospace engineering, flow physics, civil engineering, automotive engineering, and manufacturing engineering.
A few years ago the Helmholtz Association (HGF) consisting of 15 research Institutions including the German Aerospace Center (DLR) started a network research program called 'Virtual Institutes'. The basic idea of this program was to establish research groups formed by Helmholtz research centers and universities to study and develop methods or technologies for future applications and educate young scientists. It should also enable and encourage the partners of this Virtual Institute after 3 years funding to continue their cooperation in other programs. Following this HGF request and chance the DLR Windtunnel Department of the Institute of Aerodynamics and Flow Technology took the initiative and established a network with other DLR institutes and German u- versities RWTH Aachen, University of Stuttgart and Technical University Munich. The main goal of this network was to share the experience in system analysis, ae- dynamics and material science for aerospace for improving the understanding and applicability of some key technologies for future reusable space transportation s- tems. Therefore, the virtual institute was named RESPACE (Key Technologies for Re- Usable Space Systems).
Thiseditedbookispublishedin honorofDr. GeorgeJ. Vachtsevanos, ourDr. V, c- rently Professor Emeritus, School of Electrical and Computer Engineering, Georgia Institute of Technology, on the occasion of his 70th birthday and for his more than 30 years of contribution to the discipline of Intelligent Control and its application to a wide spectrum of engineering and bioengineering systems. The book is nothing but a very small token of appreciation from Dr. V's former graduate students, his peers and colleagues in the profession - and not only - to the Scientist, the Engineer, the Professor, the mentor, but most important of all, to the friend and human being. All those who have met Dr. V over the years and haveinteractedwith himin someprofessionaland/orsocial capacityunderstandthis statement: Georgenevermadeanybodyfeelinferiortohim, hehelpedandsupported everybody, and he was there when anybody needed him I was not Dr. V's student. I rst met him and his wife Athena more than 26 years ago during one of their visits to RPI, in the house of my late advisor, Dr. George N. Saridis. Since then, I have been very fortunate to have had and continue to have interactions with him. It is not an exaggeration if I say that we all learned a lot from him.
Embedded systems have long become essential in application areas in which human control is impossible or infeasible. The development of modern embedded systems is becoming increasingly difficult and challenging because of their overall system complexity, their tighter and cross-functional integration, the increasing requirements concerning safety and real-time behavior, and the need to reduce development and operation costs. This book provides a comprehensive overview of the Software Platform Embedded Systems (SPES) modeling framework and demonstrates its applicability in embedded system development in various industry domains such as automation, automotive, avionics, energy, and healthcare. In SPES 2020, twenty-one partners from academia and industry have joined forces in order to develop and evaluate in different industrial domains a modeling framework that reflects the current state of the art in embedded systems engineering. The content of this book is structured in four parts. Part I "Starting Point" discusses the status quo of embedded systems development and model-based engineering, and summarizes the key requirements faced when developing embedded systems in different application domains. Part II "The SPES Modeling Framework" describes the SPES modeling framework. Part III "Application and Evaluation of the SPES Modeling Framework" reports on the validation steps taken to ensure that the framework met the requirements discussed in Part I. Finally, Part IV "Impact of the SPES Modeling Framework" summarizes the results achieved and provides an outlook on future work. The book is mainly aimed at professionals and practitioners who deal with the development of embedded systems on a daily basis. Researchers in academia and industry may use it as a compendium for the requirements and state-of-the-art solution concepts for embedded systems development.
|
![]() ![]() You may like...
Biennial Review of Infertility - Volume…
Douglas T. Carrell, Peter N. Schlegel, …
Hardcover
Advances in Wind Turbine Blade Design…
Povl Brondsted, Rogier P. L. Nijssen, …
Paperback
R5,521
Discovery Miles 55 210
|