![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Automotive technology
Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.
This handbook dicussess tyre-road contact forces generated by heavy vehicles covering their influence on road surface and bridge response and damage, as well as ways of regulating and improving vehicles so as to minimize road damage.;The main incentive for understanding vehicle-road interaction is the possibility of reducing the road damage caused by heavy vehicles and the very high associated costs. This may be achieved by highway authorities, through improved design and construction of roads; by government agencies, through regulations intended to encourage the use of more "road-friendly" vehicles; or by vehicle engineers, through design of improved vehicle configurations and suspensions, which minimize road damage.;The book provides a unified mechanistic approach to the entire subject, covering vehicle dynamics; dynamic tyre forces; weigh-in-motion; pavement and bridge response; damage mechanisms of paving materials; vehicle-guideway interaction; suspension design to minimize road damage; and assessing road damaging potential of vehicles for regulatory purposes. It includes 25 literature reviews, covering topics from asphalt deformation to weigh-in-motion, and citing over 500 references. In addition, it discusses both the fundamental mechanics of the mechanical and civil engineering systems, as well as practical and implementation issues.
FROM THE INTRODUCTION
This beautifully photographed volume surveys the Japanese motorcycles which have helped steer the American cycling habit since the late 1950s. Examples of first models, last models, and the most unusual Japanese machines to hit American shores are covered in detail with over 450 color photos and accompanying text. Almost every cycle shown is 100 percent original or has been painstakingly returned to its original form. The first machines from Japan were simple, lightweight units that could be ridden by anyone, and opened up new roads for the neophyte rider. As the years progressed, the offerings from the Japanese makers became the ones to beat.
This book was developed using material from teaching courses on fluid mechanics, high-speed flows, aerodynamics, high-enthalpy flows, experimental methods, aircraft design, heat transfer, introduction to engineering, and wind engineering. It precisely presents the theoretical and application aspects of the terms associated with these courses. It explains concepts such as cyclone, typhoon, hurricane, and tornado, by highlighting the subtle difference between them. The text comprehensively introduces the subject vocabulary of fluid mechanics for use in courses in engineering and the physical sciences. This book * Presents the theoretical aspects and applications of high-speed flows, aerodynamics, high-enthalpy flows, and aircraft design. * Provides a ready reference source for readers to learn essential concepts related to flow physics, rarefied, and stratified flows. * Comprehensively covers topics such as laser Doppler anemometer, latent heat of fusion, and latent heat of vaporisation. * Includes schematic sketches and photographic images to equip the reader with a better view of the concepts. This is ideal study material for senior undergraduate and graduate students in the fields of mechanical engineering, aerospace engineering, flow physics, civil engineering, automotive engineering, and manufacturing engineering.
General Motors and Ford: Light Trucks, Vans, Passenger Cars covering General Motors 350 cu in (5.7 liter), 379 cu in (6.2 liter), 397 cu in (6.5 liter), and Ford 420 cu in (6.9 liter), 445 cu in (7.3 liter), and 445 cu in (7.3 liter Power Stroke) - Step-by-Step Instructions - Fully Illustrated for the Home Mechanic - Simple Maintenance to Major Repairs - Tools and equipment - Shop practices - Troubleshooting - Routine Maintenance - Engine Repairs and overhaul - Cooling system - Fuel system - Electrical system
A few years ago the Helmholtz Association (HGF) consisting of 15 research Institutions including the German Aerospace Center (DLR) started a network research program called 'Virtual Institutes'. The basic idea of this program was to establish research groups formed by Helmholtz research centers and universities to study and develop methods or technologies for future applications and educate young scientists. It should also enable and encourage the partners of this Virtual Institute after 3 years funding to continue their cooperation in other programs. Following this HGF request and chance the DLR Windtunnel Department of the Institute of Aerodynamics and Flow Technology took the initiative and established a network with other DLR institutes and German u- versities RWTH Aachen, University of Stuttgart and Technical University Munich. The main goal of this network was to share the experience in system analysis, ae- dynamics and material science for aerospace for improving the understanding and applicability of some key technologies for future reusable space transportation s- tems. Therefore, the virtual institute was named RESPACE (Key Technologies for Re- Usable Space Systems).
Thiseditedbookispublishedin honorofDr. GeorgeJ. Vachtsevanos, ourDr. V, c- rently Professor Emeritus, School of Electrical and Computer Engineering, Georgia Institute of Technology, on the occasion of his 70th birthday and for his more than 30 years of contribution to the discipline of Intelligent Control and its application to a wide spectrum of engineering and bioengineering systems. The book is nothing but a very small token of appreciation from Dr. V's former graduate students, his peers and colleagues in the profession - and not only - to the Scientist, the Engineer, the Professor, the mentor, but most important of all, to the friend and human being. All those who have met Dr. V over the years and haveinteractedwith himin someprofessionaland/orsocial capacityunderstandthis statement: Georgenevermadeanybodyfeelinferiortohim, hehelpedandsupported everybody, and he was there when anybody needed him I was not Dr. V's student. I rst met him and his wife Athena more than 26 years ago during one of their visits to RPI, in the house of my late advisor, Dr. George N. Saridis. Since then, I have been very fortunate to have had and continue to have interactions with him. It is not an exaggeration if I say that we all learned a lot from him.
Embedded systems have long become essential in application areas in which human control is impossible or infeasible. The development of modern embedded systems is becoming increasingly difficult and challenging because of their overall system complexity, their tighter and cross-functional integration, the increasing requirements concerning safety and real-time behavior, and the need to reduce development and operation costs. This book provides a comprehensive overview of the Software Platform Embedded Systems (SPES) modeling framework and demonstrates its applicability in embedded system development in various industry domains such as automation, automotive, avionics, energy, and healthcare. In SPES 2020, twenty-one partners from academia and industry have joined forces in order to develop and evaluate in different industrial domains a modeling framework that reflects the current state of the art in embedded systems engineering. The content of this book is structured in four parts. Part I "Starting Point" discusses the status quo of embedded systems development and model-based engineering, and summarizes the key requirements faced when developing embedded systems in different application domains. Part II "The SPES Modeling Framework" describes the SPES modeling framework. Part III "Application and Evaluation of the SPES Modeling Framework" reports on the validation steps taken to ensure that the framework met the requirements discussed in Part I. Finally, Part IV "Impact of the SPES Modeling Framework" summarizes the results achieved and provides an outlook on future work. The book is mainly aimed at professionals and practitioners who deal with the development of embedded systems on a daily basis. Researchers in academia and industry may use it as a compendium for the requirements and state-of-the-art solution concepts for embedded systems development.
This book offers an intuitive approach to random processes and educates the reader on how to interpret and predict their behavior. Premised on the idea that new techniques are best introduced by specific, low-dimensional examples, the mathematical exposition is easier to comprehend and more enjoyable, and it motivates the subsequent generalizations. It distinguishes between the science of extracting statistical information from raw data--e.g., a time series about which nothing is known a priori--and that of analyzing specific statistical models, such as Bernoulli trials, Poisson queues, ARMA, and Markov processes. The former motivates the concepts of statistical spectral analysis (such as the Wiener-Khintchine theory), and the latter applies and interprets them in specific physical contexts. The formidable Kalman filter is introduced in a simple scalar context, where its basic strategy is transparent, and gradually extended to the full-blown iterative matrix form.
This book contains selected, peer-reviewed papers presented at the 11th International Conference on Energy Efficiency in Motor Systems (EEMODS'19), held in Tokyo, Japan from 17-19 September 2019. As with previous conferences in this series, EEMODS'19 provided a scientific forum to discuss and debate the latest developments and impacts of electrical motor systems on energy and the environment, energy efficiency policies and programmes adopted and planned, standards (including ISO 50.001), and the technical and commercial advances made in the dissemination and penetration of energy-efficient motor systems. Topics covered include: technologies, research and innovation in the areas of electric motors from life cycle costing to 3D printing to artificial intelligence/machine learning-based monitoring systems; emerging motor technologies; power electronics and drives; pump systems, including life cycle costing, energy efficiency improvements, maintenance, and operation for industrial, water supply and treatment, building, and irrigation; compressed air systems; fans /exhaust systems; refrigeration systems maintenance and operation; mechanical power transmission; motors in household appliances and HVAC (residential and commercial); motors and drives for transport applications including policies, programmes, regulation, and international standards; industrial management policies and standards; motor system audit and verification; policies, programmes and financing: analysis of motor system energy use and greenhouse gas emissions for motor systems, e-vehicles and related charging infrastructure; harmonization of global motor efficiency test standards; evaluation of utility programmes for improving energy efficiency in motor systems; and policy implementation, market surveillance and enforcement mechanisms, including case studies. The conference is international by nature and aims to attract high quality and innovative contributions from all corners of the globe, while the papers facilitate the development of new technologies, policies and strategies to increase energy efficiency.
This open access book presents research and evaluation results of the Austrian flagship project "Connecting Austria," illustrating the wide range of research needs and questions that arise when semi-automated truck platooning is deployed in Austria. The work presented is introduced in the context of work in similar research areas around the world. This interdisciplinary research effort considers aspects of engineering, road-vehicle and infrastructure technologies, traffic management and optimization, traffic safety, and psychology, as well as potential economic effects. The book's broad perspective means that readers interested in current and state-of-the-art methods and techniques for the realization of semi-automated driving and with either an engineering background or with a less technical background gain a comprehensive picture of this important subject. The contributors address many questions such as: Which maneuvers does a platoon typically have to carry out, and how? How can platoons be integrated seamlessly in the traffic flow without becoming an obstacle to individual road users? What trade-offs between system information (sensors, communication effort, etc.) and efficiency are realistic? How can intersections be passed by a platoon in an intelligent fashion? Consideration of diverse disciplines and highlighting their meaning for semi-automated truck platooning, together with the highlighting of necessary research and evaluation patterns to address such a broad task scientifically, makes Energy-Efficient and Semi-automated Truck Platooning a unique contribution with methods that can be extended and adapted beyond the geographical area of the research reported.
This book presents a general overview of the various factors that contribute to modelling human behaviour in automotive environments. This long-awaited volume, written by world experts in the field, presents state-of-the-art research and case studies. It will be invaluable reading for professional practitioners graduate students, researchers and alike.
Thin shells are three-dimensional structures with a dimension (the thickness) small with respect to the two others.Such thin structures are widely used in automobileandaviation industries,or in civil engineering, because they provide animportantsti?ness, due to theircurvature,with a small weight. Fig. 0.1. Airbus A380 Fig. 0.2. Hemispherical roof (Marseille, France) One ofthechallenges is often to reduce the weight (andconsequently the thickness)oftheshells, preservingtheirsti?ness.So that it is essential to have 1 accuratemodelsforthinandevenverythinshells ,andtobeabletocomputethe displacements resultingfromagivenloading.In particular, singularities leading to fractures in some cases must be absolutely predicted a priori and ofcourse avoided (see Fig.0.3 forexample). Since the pioneeringmodels of Novozhilov-Donnell [81] and Koiter [65][66], numerous works havebeen devoted to establish linear and non linear elastic shell model usingdirect orsurfacic approaches [18][25][100]. More recently, the asymptoticmethods [87] havebeen used, to try tojustify rigorously, fromthe three-dimensional equations, the shell models obtained by direct approaches - lying onapriori assumption, andto construct new models [54][55]. This way, 1 Very thin shells are present in certain domains of industry, as plastic ?lms for pa- aging or for electronics, streched sails, or even very thin metal sheets obtained by drawing. E. Sanchez-Palencia et al.: Singular Problems in Shell Theory, LNACM 54, pp. 1-11.
Most approaches that contribute to the design of life-critical systems almost only consider nominal situations where procedures can be developed and used to achieve satisfactory operations. These kinds of approaches lead to rigid ways of doing things and poorly address the needs for flexibility, especially when things go wrong. It is not a matter of human adaptation but of human systems integration (HSI) flexibility. HSI flexibility requires cross-fertilization of appropriate experiences combined with creativity. This book provides risk-management approaches and methods for combining prevention and design. Features: Discusses risk-management approaches and methods for combining prevention and design Examines a transdisciplinary approach to risk management in design and operations of safer life-critical systems Proposes an approach of work analysis during design, which enables design teams to consider HSI issues early enough to fix organizational problems upstream Teaches the combination of prevention and design for safety management This book gathers and analyzes relevant field data to rationalize human and systems activity in various life-critical environments and workplaces, in a systemic manner, and in a variety of safety domains (e.g., aviation, road, navy, manufacturing, hospital, transportation, defense, sport). It further formalizes and analyzes risk-taking experience, expertise, stories about critical events, and scientific and professional literature data to help engineering designers, managers, and health and safety specialists. The text is primarily written for graduate students and professionals working in the fields of occupational health and safety, ergonomics, human factors, cognitive engineering, and human-system integration.
This thesis presents a novel ultrasonic instrument for non-invasive and in-situ characterization of journal bearing lubricant viscosity. In particular, the application to journal bearings is described by non-invasively measuring the viscosity and localized power losses throughout operation. This ultrasonic viscometer is based on the reflection of polarized shear waves from a thin resonating coating layer to increase the measurement sensitivity, in comparison to conventional ultrasonic methods. This instrument allows for a full engine oil viscoelastic characterization in-situ. The book investigates the effects of temperature, pressure and shear rate, and describes in detail the ultrasonic setup and method. Further, it demonstrates that the same technique can be applied similarly to monitor the lubrication of other engine components. As such, it offers a unique instrument that can drive the research of oil formulations to improve engine performance and fulfill the requirements of international fuel economy regulations.
This book focuses on the design of secure and efficient signature and signcryption schemes for vehicular ad-hoc networks (VANETs). We use methods such as public key cryptography (PKI), identity-based cryptography (IDC), and certificateless cryptography (CLC) to design bilinear pairing and elliptic curve cryptography-based signature and signcryption schemes and prove their security in the random oracle model. The signature schemes ensure the authenticity of source and integrity of a safety message. While signcryption schemes ensure authentication and confidentiality of the safety message in a single logical step. To provide readers to study the schemes that securely and efficiently process a message and multiple messages in vehicle to vehicle and vehicle to infrastructure communications is the main benefit of this book. In addition, it can benefit researchers, engineers, and graduate students in the fields of security and privacy of VANETs, Internet of vehicles securty, wireless body area networks security, etc.
This book gives a full account of the development process for automotive transmissions. Main topics: - Overview of the traffic - vehicle - transmission system - Mediating the power flow in vehicles - Selecting the ratios - Vehicle transmission systems - basic design principles - Typical designs of vehicle transmissions - Layout and design of important components, e.g. gearshifting mechanisms, moving-off elements, pumps, retarders - Transmission control units - Product development process, Manufacturing technology of vehicle transmissions, Reliability and testing The book covers manual, automated manual and automatic transmissions as well as continuously variable transmissions and hybrid drives for passenger cars and commercial vehicles. Furthermore, final drives, power take-offs and transfer gearboxes for 4-WD-vehicles are considered. Since the release of the first edition in 1999 there have been a lot of changes in the field of vehicles and transmissions. About 40% of the second edition's content is new or revised with new data.
This book addresses the practical issues for commercialization of current and future electric and plug-in hybrid electric vehicles (EVs/PHEVs). The volume focuses on power electronics and motor drives based solutions for both current as well as future EV/PHEV technologies. Propulsion system requirements and motor sizing for EVs is also discussed, along with practical system sizing examples. PHEV power system architectures are discussed in detail. Key EV battery technologies are explained as well as corresponding battery management issues are summarized. Advanced power electronic converter topologies for current and future charging infrastructures will also be discussed in detail. EV/PHEV interface with renewable energy is discussed in detail, with practical examples. |
![]() ![]() You may like...
Micro-Electronics and Telecommunication…
Devendra Kumar Sharma, Valentina Emilia Balas, …
Hardcover
R7,591
Discovery Miles 75 910
Metaheuristics for Finding Multiple…
Mike Preuss, Michael G. Epitropakis, …
Hardcover
R4,682
Discovery Miles 46 820
Supply Chain Innovation for Competing in…
Pietro Evangelista, Alan McKinnon, …
Hardcover
R5,209
Discovery Miles 52 090
|