![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology
This book examines Ghana's use of the fingerprint biometric technology in order to further conversations about localization championed by technical communication scholars. Localization, in this case, refers to the extent to which users demonstrate their knowledge of use by subverting and reconfiguring the purpose of technology to solve local problems. Dorpenyo argues that the success of a technology depends on how it meets the users' needs and the creative efforts users put into use situations. In User Localization Strategies in the Face of Technological Breakdown, Dorpenyo advocates studying how users of technological systems construct knowledge about the technology and develop local strategies to solve technological breakdowns. By analyzing technical documents and interview transcripts, the author identifies and advances three user localization strategies: linguistic localization, subversive localization, and user-heuristic experience localization, and considers how biometric systems can become a tool of marginalization.
This edited book serves as a vital resource on the contributions of microorganisms to advances in nanotechnology, establishing their applications in diverse areas of biomedicine, environment, biocatalysis, food and nutrition, and renewable energy. It documents the impacts of microorganisms in nanotechnology leading to further developments in microbial nanobiotechnology. This book appeals to researchers and scholars of microbiology, biochemistry and nanotechnology.
This edited book is focusing on the novel and innovative procedures in tissue culture for large scale production of plantation and horticulture crops. It is bringing out a comprehensive collection of information on commercial scale tissue culture with the objective of producing high quality, disease-free and uniform planting material. Developing low cost commercial tissue culture can be one of the best possible way to attain the goal of sustainable agriculture. Tissue culture provides a means for rapid clonal propagation of desired cultivars, and a mechanism for somatic hybridization and in vitro selection of novel genotypes. Application of plant tissue culture technology in horticulture and plantation crops provides an efficient method to improve the quality and nutrition of the crops. This book includes a description of highly efficient, low cost in vitro regeneration protocols of important plantation and horticulture crops with a detailed guideline to establish a commercial plant tissue culture facility including certification, packaging and transportation of plantlets. The book discusses somatic embryogenesis, virus elimination, genetic transformation, protoplast fusion, haploid production, coculture of endophytic fungi, effects of light and ionizing radiation as well as the application of bioreactors. This book is useful for a wide range of readers such as, academicians, students, research scientists, horticulturists, agriculturists, industrial entrepreneurs, and agro-industry employees.
Proteins are exposed to various interfacial stresses during drug product development. They are subjected to air-liquid, liquid-solid, and, sometimes, liquid-liquid interfaces throughout the development cycle-from manufacturing of drug substances to storage and drug delivery. Unlike small molecule drugs, proteins are typically unstable at interfaces where, on adsorption, they often denature and form aggregates, resulting in loss of efficacy and potential immunogenicity. This book covers both the fundamental aspects of proteins at interfaces and the quantification of interfacial behaviors of proteins. Importantly, this book introduces the industrial aspects of protein instabilities at interfaces, including the processes that introduce new interfaces, evaluation of interfacial instabilities, and mitigation strategies. The audience that this book targets encompasses scientists in the pharmaceutical and biotech industry, as well as faculty and students from academia in the surface science, pharmaceutical, and medicinal chemistry areas.
This second edition volume expands on the previous edition with updated chapters in model systems and new crops. The book contains protocols for plastid engineering in leaves, tissue culture cells, and the shoot apex of plants, as well as for marker excision from the plastid genome and engineering Rubisco, the key enzyme of photosynthesis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Chloroplast Biotechnology: Methods and Protocols, Second Edition is a valuable resource for researchers who wish to enter the field, and for practitioners looking for insights of applications in agriculture, industrial biotechnology and healthcare.
The book comprehensively covers the different topics of graphene based biopolymer and nanocomposites, mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications.The book will address and rectify the complications of using plastics that are non-degradable and has abhorrent impact on environment. The limitations of properties of biopolymer can be vanquished by employing graphene as a nanomaterial. Outstanding properties of graphene in accordance with biopolymer can be utilized to develop applications like water treatment, tissue engineering, photo-catalysts, super-absorbents. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry, and engineering courses.
ORAL DRUG DELIVERY FOR MODIFIED RELEASE FORMULATIONS Provides pharmaceutical development scientists with a detailed reference guide for the development of MR formulations Oral Drug Delivery for Modified Release Formulations is an up-to-date review of the key aspects of oral absorption from modified-release (MR) dosage forms. This edited volume provides in-depth coverage of the physiological factors that influence drug release and of the design and evaluation of MR formulations. Divided into three sections, the book begins by describing the gastrointestinal tract (GIT) and detailing the conditions and absorption processes occurring in the GIT that determine a formulation's oral bioavailability. The second section explores the design of modified release formulations, covering early drug substance testing, the biopharmaceutics classification system, an array of formulation technologies that can be used for MR dosage forms, and more. The final section focuses on in vitro, in silico, and in vivo evaluation and regulatory considerations for MR formulations. Topics include biorelevant dissolution testing, preclinical evaluation, and physiologically-based pharmacokinetic modelling (PBPK) of in vivo behaviour. Featuring contributions from leading researchers with expertise in the different aspects of MR formulations, this volume: Provides authoritative coverage of physiology, physicochemical determinants, and in-vitro in-vivo correlation (IVIVC) Explains the different types of MR formulations and defines the key terms used in the field Discusses the present status of MR technologies and identifies current gaps in research Includes a summary of regulatory guidelines from both the US and the EU Shares industrial experiences and perspectives on the evaluation of MR dosage formulations Oral Drug Delivery for Modified Release Formulations is an invaluable reference and guide for researchers, industrial scientists, and graduate students in general areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.
This book highlights the uses for underutilized crops, presenting the state-of-the-art in terms of genome sequencing for over 30 crops, previously understudied and under-researched. In a changing climate and with significant pressure on the land, it is the ideal time to be discussing novel crops, with significant biotic and abiotic tolerances and/or rich nutrient profiles for consumers. Previously, the only species with sequenced genomes were high-profile internationally recognized crops, but in the current era genomes are being sequenced for dozens of crops, including those previously classified as underutilized, now being investigated. This book covers food crops, from fruits to tubers, and from grasses to legumes, as well as crops with non-food applications. Some of these crops have draft genomes, and others have polished genomes with extensive resequencing panels. Each chapter tells the story of an individual crop or crop group, written by experts, focusing on the genome data available, revealing more about crop domestication and genetic variation, and the current and future prospects given that this data is now becoming available. It also highlights how even small sequencing projects can provide draft genome sequences suitable for gene discovery, comparative genomics, and identification of molecular markers for understanding these crops further.
Nanobiotechnology Applications in Plant Protection: Volume 2 continues the important and timely discussion of nanotechnology applications in plant protection and pathology, filling a gap in the literature for nano applications in crop protection. Nanobiopesticides and nanobioformulations are examined in detail and presented as powerful alternatives for eco-friendly management of plant pathogens and nematodes. Leading scholars discuss the applications of nanobiomaterials as antimicrobials, plant growth enhancers and plant nutrition management, as well as nanodiagnostic tools in phytopathology and magnetic and supramagnetic nanostructure applications for plant protection. This second volume includes exciting new content on the roles of biologically synthesized nanoparticles in seed germination and zinc-based nanostructures in protecting against toxigenic fungi. Also included is new research in phytotoxicity, nano-scale fertilizers and nanomaterial applications in nematology and discussions on Botyris grey mold and nanobiocontrol. This book also explores the potential effects on the environment, ecosystems and consumers and addresses the implications of intellectual property for nanobiopesticides. Further discussed are nanotoxicity effects on the plant ecosystem and nano-applications for the detection, degradation and removal of pesticides.
The book is a comprehensive treatment of the field, covering fundamental theoretical principles and new technological advancements, state-of-the-art device design, and reviewing examples encompassing a wide range of related sub-areas. In particular, the first area focuses on the recent development of novel wearable and implantable antenna concepts and designs including metamaterial-based wearable antennas, microwave circuit integrated wearable filtering antennas, and textile and/or fabric material enabled wearable antennas. The second set of topics covers advanced wireless propagation and the associated statistical models for on-body, in-body, and off-body modes. Other sub-areas such as efficient numerical human body modeling techniques, artificial phantom synthesis and fabrication, as well as low-power RF integrated circuits and related sensor technology are also discussed. These topics have been carefully selected for their transformational impact on the next generation of body-area network systems and beyond.
Before the concept of history began, humans undoubtedly acquired life benefits by discovering medicinal and aromatic plants (MAPs) that were food and medicine. Today, a variety of available herbs and spices are used and enjoyed throughout the world and continue to promote good health. The international market is also quite welcoming for MAPs and essential oils. The increasing environment and nature conscious buyers encourage producers to produce high quality essential oils. These consumer choices lead to growing preference for organic and herbal based products in the world market. As the benefits of medicinal and aromatic plants are recognized, these plants will have a special role for humans in the future. Until last century, the production of botanicals relies to a large degree on wild-collection. However, the increasing commercial collection, largely unmonitored trade, and habitat loss lead to an incomparably growing pressure on plant populations in the wild. Therefore, medicinal and aromatic plants are of high priority for conservation. Given the above, we bring forth a comprehensive volume, "Medicinal and Aromatic Plants: Healthcare and Industrial Applications", highlighting the various healthcare, industrial and pharmaceutical applications that are being used on these immensely important MAPs and its future prospects. This collection of chapters from the different areas dealing with MAPs caters to the need of all those who are working or have interest in the above topic.
Learn how AI and data science are upending the worlds of biology and medicine In Silico Dreams: How Artificial Intelligence and Biotechnology Will Create the Medicines of the Future delivers an illuminating and fresh perspective on the convergence of two powerful technologies: AI and biotech. Accomplished genomics expert, executive, and author Brian Hilbush offers readers a brilliant exploration of the most current work of pioneering tech giants and biotechnology startups who have already started disrupting healthcare. The book provides an in-depth understanding of the sources of innovation that are driving the shift in the pharmaceutical industry away from serendipitous therapeutic discovery and toward engineered medicines and curative therapies. In this fascinating book, you'll discover: An overview of the rise of data science methods and the paradigm shift in biology that led to the in silico revolution An outline of the fundamental breakthroughs in AI and deep learning and their applications across medicine A compelling argument for the notion that AI and biotechnology tools will rapidly accelerate the development of therapeutics A summary of innovative breakthroughs in biotechnology with a focus on gene editing and cell reprogramming technologies for therapeutic development A guide to the startup landscape in AI in medicine, revealing where investments are poised to shape the innovation base for the pharmaceutical industry Perfect for anyone with an interest in scientific topics and technology, In Silico Dreams also belongs on the bookshelves of decision-makers in a wide range of industries, including healthcare, technology, venture capital, and government.
This book presents the applications of systems biology and synthetic biology in cancer medicine. It highlights the use of computational and mathematical models to decipher the complexity of cancer heterogeneity. The book emphasizes the modeling approaches for predicting behavior of cancer cells, tissues in context of drug response, and angiogenesis. It introduces cell-based therapies for the treatment of various cancers and reviews the role of neural networks for drug response prediction. Further, it examines the system biology approaches for the identification of medicinal plants in cancer drug discovery. It explores the opportunities for metabolic engineering in the realm of cancer research towards development of new cancer therapies based on metabolically derived targets. Lastly, it discusses the applications of data mining techniques in cancer research. This book is an excellent guide for oncologists and researchers who are involved in the latest cancer research.
Somatic hybrids through the fusion of plant protoplasts have widened the genetic variability of cultivated plants. As "Somatic Hybridization in Crop Improvement I", published in 1994, this volume describes how this discipline can contribute to the improvement of crops. It comprises 24 chapters dealing with interspecific and intergeneric somatic hybridization and cybridization. It is divided into four sections:I. Cereals: Barley, rice, and wheat.II. Vegetables and Fruits: Arabidopsis, Asparagus, Brassica, chicory, Citrus, Cucumis, Diospyros, Ipomoea, and various Solanaceous species, e.g., tomato, potato, and eggplant.III. Medicinal and Aromatic Plants: Atropa, Dianthus, Nicotiana, and Senecio.IV. Legumes/Pasture Crops: Alfalfa.This book is tailored to the needs of advanced students, teachers and researchers in the fields of plant breeding, genetic engineering, and plant tissue culture.
This book offers a comprehensive review of the latest developments, challenges and trends in C1-based (one-carbon based) bioproduction, and it presents an authoritative account of one-carbon compounds as promising alternative microbial feedstocks. The book starts with a perspective on the future of C1 compounds as alternative feedstocks for microbial growth, and their vital role in the establishment of a sustainable circular carbon economy, followed by several chapters in which expert contributors discuss about the recent strategies and address key challenges regarding one or more C1 feedstocks. The book covers topics such as acetogenic production from C1 feedstocks, aerobic carboxydotrophic bacteria potential in industrial biotechnology, bioconversion of methane to value-added compounds, combination of electrochemistry and biology to convert C1 compounds, and bioprocesses based on C1-mixotrophy. Particular attention is given to the current metabolic engineering, systems biology, and synthetic biology strategies applied in this field.
Cancer Nanotheranostics, Volume 2 continues the discussion of the important work being done in this field of cancer nanotechnology. The contents of these two volumes are explained in detail as follows. In the first volume of Cancer Nanotheranostics, we discuss the role of different nanomaterials for cancer therapy including lipid-based nanomaterials, protein and peptide-based nanomaterials, polymer-based nanomaterials, metal-organic nanomaterials, porphyrin-based nanomaterials, metal-based nanomaterials, silica-based nanomaterials, exosome-based nanomaterials, and nano-antibodies. This important second volume discusses nano-based diagnosis of cancer, nano-oncology for clinical applications, nano-immunotherapy, nano-based photothermal cancer therapy, nanoerythrosomes for cancer drug delivery, regulatory perspectives of nanomaterials, limitations of cancer nanotheranostics, safety of nanobiomaterials for cancer nanotheranostics, multifunctional nanomaterials for targeting cancer nanotheranostics, and the role of artificial intelligence in cancer nanotheranostics. Volume 2 is a vital continuation of this two-volume set. Together, these two volumes create a comprehensive and unique examination of this important area of research.
The Springer Handbook of Enzymes provides concise data on some 5,000 enzymes sufficiently well characterized and here is the second, updated edition. Their application in analytical, synthetic and biotechnology processes as well as in food industry, and for medicinal treatments is added. Data sheets are arranged in their EC-Number sequence. The new edition reflects considerable progress in enzymology: the total material has more than doubled, and the complete 2nd edition consists of 39 volumes plus Synonym Index. Starting in 2009, all newly classified enzymes are treated in Supplement Volumes."
This essential volume explores a variety of tools and protocols of structure-based (homology modeling, molecular docking, molecular dynamics, protein-protein interaction network) and ligand-based (pharmacophore mapping, quantitative structure-activity relationships or QSARs) drug design for ranking and prioritization of candidate molecules in search of effective treatment strategy against coronaviruses. Beginning with an introductory section that discusses coronavirus interactions with humanity and COVID-19 in particular, the book then continues with sections on tools and methodologies, literature reports and case studies, as well as online tools and databases that can be used for computational anti-coronavirus drug research. Written for the Methods in Pharmacology and Toxicology series, chapters include the kind of practical detail and implementation advice that ensures high quality results in the lab. Comprehensive and timely, In Silico Modeling of Drugs Against Coronaviruses: Computational Tools and Protocols is an ideal reference for researchers working on the development of novel anti-coronavirus drugs for SARS-CoV-2 and for coronaviruses that will likely appear in the future.
Sixteen contributions cover such topics as the polymerase chain reaction; regulation of alternative splicing; human retinoblastoma susceptibility gene; control of translation initiation in mammalian cells; the utility of streptomycetes as hosts for gene cloning; folding of eukaryotic proteins produc
Maize is one of the most generally grown cereal crops at global level, followed by wheat and rice. Maize is the major crop in China both in terms of yield and acreage. In 2012, worldwide maize production was about 840 million tons. Maize has long been a staple food of most of the global population (particularly in South America and Africa) and a key nutrient resource for animal feed and for food industrial materials. Maize belts vary from the latitude 58° north to the latitude 40° south, and maize ripens every month of the year. Abiotic and biotic stresses are common in maize belts worldwide. Abiotic stresses (chiefly drought, salinity, and extreme temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, production and productivity. In the recent past, intense droughts, waterlogging, and extreme temperatures have relentlessly affected maize growth and yield. In China, 60% of the maize planting area is prone to drought, and the resultant yield loss is 20%–30% per year; in India, 25%–30% of the maize yield is lost as a result of waterlogging each year. The biotic stresses on maize are chiefly pathogens (fungal, bacterial, and viral), and the consequential syndromes, like ear/stalk rot, rough dwarf disease, and northern leaf blight, are widespread and result in grave damage. Roughly 10% of the global maize yield is lost each year as a result of biotic stresses. For example, the European corn borer [ECB, Ostrinianubilalis (Hübner)] causes yield losses of up to 2000 million dollars annually in the USA alone in the northern regions of China, the maize yield loss reaches 50% during years when maize badly affected by northern leaf blight. In addition, abiotic and biotic stresses time and again are present at the same time and rigorously influence maize production. To fulfill requirements of each maize-growing situation and to tackle the above mentions stresses in an effective way sensibly designed multidisciplinary strategy for developing suitable varieties for each of these stresses has been attempted during the last decade. Genomics is a field of supreme significance for elucidating the genetic architecture of complex quantitative traits and characterizing germplasm collections to achieve precise and specific manipulation of desirable alleles/genes. Advances in genotyping technologies and high throughput phenomics approaches have resulted in accelerated crop improvement like genomic selection, speed breeding, particularly in maize. Molecular breeding tools like collaborating all omics, has led to the development of maize genotypes having higher yields, improved quality and resilience to biotic and abiotic stresses. Through this book, we bring into one volume the various important aspects of maize improvement and the recent technological advances in development of maize genotypes with high yield, high quality and resilience to biotic and abiotic stresses
This book focuses on the discoveries in M. truncatula genomic research which has been undertaken in the last two decades. Legumes are important for their economic values as food, feed, and fodder and also serve as the pillar of sustainable agriculture because of its biological nitrogen fixation capacity. Medicago truncatula was established as a model legume in the 1990s and has been well adopted as a model internationally since then. M. truncatula is an autogamous, diploid (2n = 16) species with a short generation time, and relatively small genome size (~375 Mbp). The M. truncatula genome was initially sequenced by the International Medicago Genome Annotation Group (IMGAG) in 2011 and has been well-annotated. M. truncatula research benefits from the availability of several genetic and genomic tools, such as gene expression atlas (MtGEA), insertion and neutron bombardment mutant populations, and a HapMap panel containing 384 sequenced inbred lines for genome-wide association studies. This book covers the current status and latest advancements of the M. truncatula genomics and transcriptomics resources along with a glimpse of newly developed tools that makes M. truncatula a front runner model in functional genomic studies.
Rapid prototyping is used to design and develop medical devices and instrumentation. This book details research in rapid prototyping of bio-materials for medical applications. It provides a wide variety of examples of medical applications using rapid prototyping, including tissue engineering, dental applications, and bone replacement. Coverage also discusses the emergence of computer aided design in the development of prosthetic devices.
An improved understanding of the interactions between nanoparticles and plant retorts, including their uptake, localization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. This may further impact other agricultural and industrial processes that are based on plant crops. This two-volume book analyses the key processes involved in the nanoparticle delivery to plants and details the interactions between plants and nanomaterials. Potential plant nanotechnology applications for enhanced nutrient uptake, increased crop productivity and plant disease management are evaluated with careful consideration regarding safe use, social acceptance and ecological impact of these technologies. Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications begins the discussion of nanotechnology applications in plants with the characterization and nanosynthesis of various microbes and covers the mechanisms and etiology of nanostructure function in microbial cells. It focuses on the potential alteration of plant production systems through the controlled release of agrochemicals and targeted delivery of biomolecules. Industrial and medical applications are included. Volume 2 continues this discussion with a focus on biosynthesis and toxicity. |
You may like...
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R3,925
Discovery Miles 39 250
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
Enzymes as Sensors, Volume 589
Richard Thompson, Carol A. Fierke
Hardcover
R4,538
Discovery Miles 45 380
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
|