![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology
Brings together in a single volume many cellular systems, allowing for better comparison of research results and helping to establish global strategies and standards. This unique reference/text presents the basic theory and practical applications of metabolic engineering (ME)-offering systematic analysis of complex metabolic pathways and ways of employing recombinant DNA techniques to alter cell behavior, metabolic patterns, and product formation. Covering ME as a distinct subfield of genetic engineering, Metabolic Engineering demonstrates new means of enabling cells to produce valuable proteins, polypeptides, and primary and secondary metabolites. Proposes a new paradigm for the directed modification of cellular metabolism and properties Written by more than 35 leading international experts in this field, Metabolic Engineering discusses metabolic engineering in plant and mammalian cells, bacteria, and yeasts illuminates the potential of the "cell factory" model for production of chemicals and therapeutics showcases methods of toxic waste management examines techniques for developing new antiviral and antibacterial molecules and effective gene and somatic-cell therapies investigates engineering strategies for increased production of bulk or specialty chemicals, including alcohols, organic and amino acids, aromatic compounds, antibiotics, novel polyketide metabolites, biopolymers, and plant secondary metabolites addresses uses of metabolic flux analysis, metabolic control analysis, and online metabolic flux analysis illustrates navigation of metabolic pathways in mammalian cell systems and new approaches to the degradation of xenobiotics assesses metabolic engineering applications in agriculture, pharmaceuticals, and environmental systems and more Containing over 1000 references, tables, equations, and drawings, Metabolic Engineering serves as an indispensable reference for bioprocess technologists, metabolic and chemical engineers, bi
This book provides that knowledge needed to introduce individuals to the most important research and content on nanotoxicology in nanobiomedicine. Nanotechnology is helping to considerably improve, even revolutionize many technology and industry sectors: information technology, homeland security, medicine, transportation, energy, food safety, and environmental science, among many others. There is an urgent need for a general reference textbook that presents the most recent information on the toxicity and its effects in all these sectors, biomedicine in particular. It includes historical information, nanotoxicology by subject area and or disease, sources of nanomaterials, drug delivery systems and more. Scientists, researchers, and students in all fields that use nanotechnology will find this book essential reading.
Heterosis and Hybrid Seed Production in Agronomic Crops discusses how heterosis or "hybrid vigor" has played a major role in improving crop productivity and quality in order to feed the ever-increasing human population, particularly in developing countries. Plant breeders, agronomists, seed producers, and farmers will discover why the development of hybrids in the world's major food crops and why the methods of hybrid seed production are critical for achieving this goal. This landmark book deals with heterosis and hybrid seed production of major agronomic crops such as wheat, rice, maize, sorghum, cotton, sunflower, and rapeseed. Through Heterosis and Hybrid Seed Production in Agronomic Crops, you will discover valuable information on hybrid seed production methods that is not available in any other single volume. This unique book contains relevant and essential information about important procedures to help increase crop yield, including: methods for derivingsecond cycle inbred lines for hybrid maize possibilities for hybrid seed production in wheat techniques of hybrid sorghum seed production production of hybrid seeds using male sterile lines of cotton agronomic management in seed production plots of sunflower seed production technology of hybrid rapeseed advances in hybrid seed production technology of rice in ChinaHeterosis and Hybrid Seed Production in Agronomic Crops gives you a global perspective on essential food crops in all parts of the world. This informative guide will help you use hybrid seed production methods with important agricultural crops and increase the quality of these vital and essential food sources.
The 2012 International Conference on Applied Biotechnology (ICAB 2012) was held in Tianjin, China on October 18-19, 2012. It provides not only a platform for domestic and foreign researchers to exchange their ideas and experiences with the application-oriented research of biotechnology, but also an opportunity to promote the development and prosperity of the biotechnology industry. The proceedings of ICAB 2012 mainly focus on the world's latest scientific research and techniques in applied biotechnology, including Industrial Microbial Technology, Food Biotechnology, Pharmaceutical Biotechnology, Environmental Biotechnology, Marine Biotechnology, Agricultural Biotechnology, Biological Materials and Bio-energy Technology, Advances in Biotechnology, and Future Trends in Biotechnology. These proceedings are intended for scientists and researchers engaging in applied biotechnology. Professor Pingkai Ouyang is the President of the Nanjing University of Technology, China. Professor Tongcun Zhang is the Director of the Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education at the College of Bioengineering, Tianjin University of Science and Technology, China. Dr. Samuel Kaplan is a Professor at the Department of Microbiology & Molecular Genetics at the University of Texas at Houston Medical School, Houston, Texas, USA. Dr. Bill Skarnes is a Professor at Wellcome Trust Sanger Institute, United Kingdom.
Biotechnology: Quality Assurance and Validation provides a practical, detailed discussion of what issues Quality Assurance and Quality Control need to identify for effective control in the preparation of biotechnology products. The book presents a series of topics that define some of the unique challenges facing biotechnology companies in producing biopharmaceutical products. The topics selected address quality and validation issues, starting with the cryopreservation of cell lines through the filling and finishing of the product. It includes a validation guide, a clear presentation of how to use filtration effectively, a synoptic view of cleaning procedures, and much more.
Predictive control is a powerful tool in dealing with those processes with large time delays. Generalized Predictive Control (GPC) is the most popular approach to the subject, and this text discusses the application of GPC starting with the concept of long-range predictive control and its need in medicine (particularly automated drug deliveries). The concept of adaptation is also emphasized with respect to patient-to-patient parameter variations. Subsequent chapters discuss interactions, comparisons and various aspects of GPC. The book concludes by putting into perpective the generic nature of the architecture built around GPC and which provides model-based fault diagnosis with control.
Early anthropological evidence for plant use as medicine is 60,000 years old as reported from the Neanderthal grave in Iraq. The importance of plants as medicine is further supported by archeological evidence from Asia and the Middle East. Today, around 1.4 billion people in South Asia alone have no access to modern health care, and rely instead on traditional medicine to alleviate various symptoms. On a global basis, approximately 50 to 80 thousand plant species are used either natively or as pharmaceutical derivatives for life-threatening conditions that include diabetes, hypertension and cancers. As the demand for plant-based medicine rises, there is an unmet need to investigate the quality, safety and efficacy of these herbals by the "scientific methods". Current research on drug discovery from medicinal plants involves a multifaceted approach combining botanical, phytochemical, analytical, and molecular techniques. For instance, high throughput robotic screens have been developed by industry; it is now possible to carry out 50,000 tests per day in the search for compounds which act on a key enzyme or a subset of receptors. This and other bioassays thus offer hope that one may eventually identify compounds for treating a variety of diseases or conditions. However, drug development from natural products is not without its problems. Frequent challenges encountered include the procurement of raw materials, the selection and implementation of appropriate high-throughput bioassays, and the scaling-up of preparative procedures. Research scientists should therefore arm themselves with the right tools and knowledge in order to harness the vast potentials of plant-based therapeutics. The main objective of Plant and Human Health is to serve as a comprehensive guide for this endeavor. Volume 1 highlights how humans from specific areas or cultures use indigenous plants. Despite technological developments, herbal drugs still occupy a preferential place in a majority of the population in the third world and have slowly taken roots as alternative medicine in the West. The integration of modern science with traditional uses of herbal drugs is important for our understanding of this ethnobotanical relationship. Volume 2 deals with the phytochemical and molecular characterization of herbal medicine. Specifically, it will focus on the secondary metabolic compounds which afford protection against diseases. Lastly, Volume 3 focuses on the physiological mechanisms by which the active ingredients of medicinal plants serve to improve human health. Together this three-volume collection intends to bridge the gap for herbalists, traditional and modern medical practitioners, and students and researchers in botany and horticulture.
This comprehensive yet balanced work emphasizes the principles and rationale underlying recombinant DNA methodology while furnishing a general understanding of the experimental protocols-suggesting flexible approaches to resolving particular molecular necessities that are easily adaptable to readers' specific applications. Features summary tables presenting at-a-glance information on practices of recombinant DNA methodologies! Recombinant DNA Principles and Methodologies discusses basic and advanced topics requisite to the employment of recombinant DNA technology, such as -plasmid biology -nucleic acid biochemistry -restriction enzymes -cloning strategies -gel electrophoresis -southern and northern blotting -preparation of probes -phage lambda biology -cosmids and genome analysis -cloned gene expression -polymerase chain reaction -conventional and automated DNA sequencing -site-directed mutagenesis -and more! Elucidating the material with over 2250 edifying references, equations, drawings, and photographs, this state-of-the-art resource is a valuable hands-on guide for molecular and cell biologists, biochemists, bioprocess technologists, applied and industrial microbiologists, virologists, geneticists, chemical engineers, and upper-level undergraduate and graduate students in these disciplines.
This important reference book is the first comprehensive resource worldwide that reflects research achievements in date palm biotechnology, documenting research events during the last four decades, current status, and future outlook. This book is essential for researchers, policy makers, and commercial entrepreneurs concerned with date palm. The book is invaluable for date palm biotechnology students and specialists. This monument is written by an international team of experienced researchers from both academia and industry. It consists of five sections covering all aspects of date palm biotechnology including A) Micropropagation, B) Somaclonal Variation, Mutation and Selection, C) Germplasm Biodiversity and Conservation, D) Genetics and Genetic Improvement, and E) Metabolites and Industrial Biotechnology. The book brings together the principles and practices of contemporary date palm biotechnology. Each chapter contains background knowledge related to the topic, followed by a comprehensive literature review of research methodology and results including the authors own experience including illustrative tables and photographs."
Plant protoplasts have proved to be an excellent tool for in vitro manipu- lations, somatic hybridization, DNA uptake and genetic transformation, and for the induction of somaclonal variation. These studies reflect the far- reaching impact of protoplast alterations for agriculture and forest bio- technology. Taking these aspects into consideration, the series of books on Plant Protoplasts and Genetic Engineering provides a survey of the litera- ture, focusing on recent information and the state of the art in protoplast Plant Protoplasts manipulation and genetic transformation. This book, and Genetic Engineering VI, like the previous five volumes published in 1989,1993, and 1994, is unique in its approach. It comprises 27 chapters dealing with the regeneration of plants from protoplasts, and genetic transformation in various species of Arachis, Bupleurum, Capsella, Dendrobium, Dianthus, Diospyros, Fagopyrum, Festuca, Gentiana, Glycyrrhiza, Gossypium, Hemerocallis, Levisticum, Lonicera, Musa, Physallis, Platanus, Prunus, Saposhnikovia, Solanum, Spinacia, Trititrigia, Tulipa, and Vaccinium; including fruits such as apricot, banana, cranberry, pepino, peach, and plum. This book may be of special interest to advanced students, teachers, and research scientists in the field of plant tissue culture, molecular biology, genetic engineering, plant breeding, and general bio- technology. New Delhi, August 1995 Professor Y. P. S. BAJA] Series Editor Contents Section I Regeneration of Plants from Protoplasts 1. 1 Regeneration of Plants from Protop1asts of Arachis Species (Peanut) Z. LI, R. L. JARRET, and J. W. DEMSKI (With 2 Figures) 1 Introduction ...3 2 Isolation of Pro top lasts ...4 3 Culture of Protoplasts ...
This introductory guide provides novice researchers and lab students with a thorough step-by-step approach to standard animal cell culture techniques. Coverage includes lab safety and best practices, sterility management, preparation, ethical considerations, and troubleshooting for common pain points. This is an up-to-date, indispensable handbook for early-career researchers and students, as well as established scientists in biotechnology, cell and developmental biology, pharmaceutical toxicology, cytogenetics, and more.
All the information necessary to set up and run a tissue culture facility is provided in this introductory book.; ; Includes an overview of all the basic tissue culture techniques and describes in detail both the theoretical background and the practical a
This book contains most of the scientific contributions during the 48th annual conference of the International Society on Oxygen Transport to Tissue (ISOTT), which was held electronically in July 2021. It includes multidisciplinary contributions from scientists (physicists, biologists and chemists), engineers, clinicians and mathematicians and covers covers all aspects of oxygen transport from air to the cells, organs and organisms; instrumentation and methods to sense oxygen and clinical evidence.
This book discusses advancements in the applications of nanoparticles in tissue engineering. It examines the applications of nanobiomaterials in hard tissue regeneration, fabrication, and characterization. The book also analyzes the implication of three-dimensional and four-dimensional fabrication techniques for the production of the scaffold in tissue engineering and their advantages over conventional scaffold production techniques. Further, it presents smart materials used in making 4-D scaffolds that imitate the dynamic response of tissue against natural stimuli and adapt to the microenvironment by changing their conformation or other properties. It also summarizes the growing field of biomolecular detection and biosensors in tissue engineering and the increasing prominence of nanoparticles in the biosensors. Further, it provides the future outlook and associated challenges of the application of nanomaterials in tissue engineering.
Genomics, the mapping of the entire genetic complement of an organism, is the new frontier in biology. This handbook on the statistical issues of genomics covers current methods and the tried-and-true classical approaches.
The book discusses the importance of eggplant (Solanum melongena L.) as a crop, highlighting the potential for eggplant to serve as a model for understanding several evolutionary and taxonomic questions. It also explores the genomic make-up, in particular in comparison to other Solanaceous crops, and examines the parallels between eggplant and tomato domestication as well as between the most common eggplant species and two related eggplants native to Africa (Ethiopian eggplant [Solanum aethiopicum L.] and African eggplant [Solanum macrocarpon L.]). The eggplant genome was first sequenced in 2014, and an improved version was due to be released in 2017. Further investigations have revealed the relationships between wild species, domesticated eggplant, and feral weedy eggplant (derived from the domesticate), as well as targets of selection during domestication. Parallels between eggplant and tomato domestication loci are well known and the molecular basis is currently being investigated. Eggplant is a source of nutrition for millions of people worldwide, especially in Southeast Asia where it is a staple food source. Domesticated in the old world, in contrast to its congeners tomato and potato, the eggplant is morphologically and nutritionally diverse. The spread of wild eggplants from Africa is particularly interesting from a cultural point of view. This book brings together diverse fields of research, from bioinformatics to taxonomy to nutrition to allow readers to fully understand eggplant's importance and potential.
In order to feed the world, global agriculture will have to double food production by 2050. As a result, the use of soils with fertilizers and pesticides in agronomic ecosystems will increase, taking into account the sustainability of these systems and also the provision of food security. Thus, soil ecosystems, their health, and their quality are directly involved in sustainable agronomical practices, and it is important to recognize the important role of soil microbial communities such as mycorrhizal fungi, their biodiversity, interactions, and functioning. Soil ecosystems are under the threat of biodiversity loss due to an increase of cultivated areas and agronomic exploitation intensity. Also, changes in land use alter the structure and function of ecosystems where biodiversity is vital in the ecosystem. Soils are a major aid in food production in all terrestrial ecosystems; however, this means they are also involved in gas emission and global warming. Thus, in agronomic ecosystems, several mitigation practices have been proposed to promote the increase of carbon soil stock, and the reduction of warming gas emission from soils. In South America, most of the rural population depends economically on agriculture and usually works in family units. New, organic, safe, and sustainable agro-forestry practices must be applied to support local communities and countries to achieve hunger eradication, rural poverty reduction, and sustainable development. This book compiles new information for mycorrhizal occurrence in natural and anthropic environments in South America. It includes new reports of mycorrhizal fungi diversity along different mycorrhizal types and their effect on plant communities, plant invasions, the use of mycorrhizal fungi for ecological and sustainable studies, management programs of natural and agroecosystems, and forestry and food-secure production. This book fills the gaps in biodiversity knowledge, management and safe food production of mycorrhizas. It should be a valuable help to researchers, professors and students, to aid in use of mycorrhizal fungi while also focusing on their biodiversity, sustainable safe food production, and conservation perspectives.
Molecular farming in plants is a relatively young subject of sciences. As plants can offer an inexpensive and convenient platform for the large-scale production of recombinant proteins with various functions, the driven force from the giant market for recombinant protein pharmaceuticals and industrial enzymes makes this subject grow and advance very quickly. To summarize recent advances, current challenges and future directions in molecular farming, international authorities were invited to write this book for researchers, teachers and students who are interested in this subject. This book, with the focus on the most advanced cutting-edge breakthroughs, covers all the essential aspects of the field of molecular farming in plants: from expression technologies to downstream processing, from products to safety issues, and from current advances and holdups to future developments.
This volume contains the proceedings of the Eighth International Symposium on Cyclodextrins, held in Budapest, Hungary, March 31-April 2, 1996. The 147 papers collected here are milestones in the exponentially increasing cyclodextrin literature, and represent a summary of the last two years' achievement in this field, with applications in such diverse disciplines as pharmaceuticals, food, cosmetics, textiles, plastics, and chromatography. Some highlights: lipophilicity profiles of cyclodextrins by computer molecular graphics; recent toxicological studies on cyclodextrins; Buckminsterfullerene/cyclodextrin complexes; hydroxypropyl-beta-cyclodextrin; pharmacokinetics and toxicology; peracylated cyclodextrins as drug carriers; cyclodextrins in nasal drug delivery; textile fibre surface modification by a reactive cyclodextrin; cyclodextrin-containing fabric care products; drug targeting by cyclodextrin-dimers for photodynamic cancer therapy; cyclodextrins in ophthalmologic drugs; new cyclodextrin derivatives and their potentials. Audience: This book will be of interest to researchers whose work involves pharmaceuticals, food chemicals and flavours, food additives, chromatographic methods, and biotechnology, as well as fundamental cyclodextrin research.
Several years ago, when the discovery of catalytic RNA was recognized in a public manner,many people asked if new ?elds of therapy would soon be available. Although some tentative positive answers were given,nobody would say with certainty that RNA of various kinds was a truly promising means of altering gene expression. In fact,over the past decade,both our knowledge of RNAs with different functions and the utility of RNA in the inhibition or enhancement of gene expression have occurred with great drama. We proceeded in terms of possible therapeutic tools from RNase P and group I introns through "hammerhead" RNA enzymes, antisense technology, and more recently, to RNAi and its derivatives. A useful practical method of RNA delivery in animals will complete the picture. The diversity of RNA and the varied role of it inside cells and in therapy should be a tremendous challenge for young molecular biologists. This volume will make their task easier. Sidney Altman Sterling Professor of Molecular,Cellular & Devel- mental Biology,Nobel Laureate Department of Molecular,Cellular and Developm- tal Biology Yale University V NGTPR 4/23/05 1:00 PM Page VI VI Foreword Delivery of nucleic acids to cells in an animal remains a challenging problem. It is the major obstacle to success of therapeutic approaches using genes and oli- nucleotides,including siRNAs. Solutions found so far by chemists are satisfactory only for transfection of cells in culture.
Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in technical crops is imperative for addressing FHEE (food, health, energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The 15 chapters dedicated to 13 technical crops and 2 technical crop groups in this volume will deliberate on different types of biotic stress agents and their effects on and interaction with crop plants; will enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will enunciate the success stories of genetic engineering for developing biotic stress resistant varieties; will discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; will enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and quality; and will also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops. |
You may like...
Cyanobacterial Lifestyle and its…
Prashant Kumar Singh, Maria F. Fillat, …
Paperback
R3,925
Discovery Miles 39 250
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R3,925
Discovery Miles 39 250
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,094
Discovery Miles 30 940
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R14,897
Discovery Miles 148 970
|