![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology
Oxides for Medical Applications reviews the most important advances of oxides with optical, magnetic and electronic properties for biomedical applications. Owing to their unusual properties, oxides are expected to play a significant role in the prevention or early treatment of diseases. In addition to catalytically active artificial enzymes based on oxide materials-the book provides comprehensive coverage of the most relevant categories of oxide materials and their properties and applications. Since magnetic oxides are used extensively for a wide range of medical applications, there are numerous chapters that address these materials, including LSMO nanoparticles, ferrites, nanocatalysts, and more. Finally, practical considerations for the translation of these materials from the lab to the clinic are reviewed, including biocompatibility and toxicity of oxide nanoparticles, making this a suitable resource for researchers and practitioners in materials science and engineering in academia and the clinic.
In the last ten years there has been a considerable increase of interest on the notion of the minimal cell. With this term we usually mean a cell-like structure containing the minimal and sufficient number of components to be defined as alive, or at least capable of displaying some of the fundamental functions of a living cell. In fact, when we look at extant living cells we realize that thousands of molecules are organized spatially and functionally in order to realize what we call cellular life. This fact elicits the question whether such huge complexity is a necessary condition for life, or a simpler molecular system can also be defined as alive. Obviously, the concept of minimal cell encompasses entire families of cells, from totally synthetic cells, to semi-synthetic ones, to primitive cell models, to simple biomimetic cellular systems. Typically, in the experimental approach to the construction of minimal the main ingredient is the compartment, lipid vesicles (liposomes) are used to host simple and complex molecular transformations, from single or multiple enzymic reactions, to polymerase chain reactions, to gene expression. Today this research is seen as part of the broader scenario of synthetic biology but it is rooted in origins of life studies, because the construction of a minimal cell might provide biophysical insights into the origins of primitive cells, and the emergence of life on earth. The volume provides an overview of physical, biochemical and functional studies on minimal cells, with emphasis to experimental approaches. 15 International experts report on their innovative contributions to the construction of minimal cells.
This book gives a state-of-the-art view by recognized researchers of the nanotechnologies required for future integrated systems leading to innovations in energy, the environment, and biotechnologies. Nanostructures that would be difficult to form using the current semiconductor technology will be realized using a combination of bottom-up and top-down processes, including hybrid nanostructures made of inorganic and organic/biological materials. Bio-sensing, imaging, and cell or molecular manipulation are discussed in Chapters 2-7. The acquisition of basic knowledge on the cellular level will lead to curing serious diseases. Also, nanofabrication technologies, discussed in Chapters 8-15, will lead to next-generation solar cells, secondary batteries, and advanced electronic circuits using nanostructured materials, thus providing solutions for serious energy and environment issues. Prospective readers of this book include graduate students as well as researchers and engineers working in this field.
It is our pleasure to present the 53rd volume of the Biotechnology in Agric- ture and Forestry (BAF) series. This is the second issue of the BAF series edited by the new editorial team consisting of Professors Horst Lorz, University of Hamburg, Hamburg, Germany, Jack Widholm, University of Illinois, Urbana, USA,and Toshiyuki Nagata,University of Tokyo,Tokyo,Japan. This series was originally founded by the late Professor Y. P. S. Bajaj,Delhi,India,in 1986. The current volume is somewhat unique, since in this volume only one plant cell line,the tobacco BY-2 cell line,is handled,while previous volumes mainly dealt with plants having certain economical importance. Nonetheless, the three editors of this volume,Professors Dirk Inze,Seiichiro Hasezawa and Toshiyuki Nagata,believe that most scientists who are working in the ?eld of plant s- ences will enjoy seeing this volume as a kind of source book of the unique tobacco BY-2 cells. Indeed,tobacco BY-2 cells have,over the years,gained the status as a model plant system,comparable to HeLa cells for human research. The current book is very timely because a wealth of basic knowledge on plant cells related to,e. g. ,cell division,cytoskeleton,cytokinesis,plant hormone s- naling,etc. ,has been gathered from experiments with this cell line. As re?ected in the contents,the accumulated knowledge of the BY-2 cell line is enormous and there is no other cell line that has been so important for progress in the plant sciences. Such knowledge should be shared with scientists from the ?elds of both applied and basic plant science.
Considerable effort and time is allocated to introducing cell culture and fermentation technology to undergraduate students in academia, generally through a range of courses in industrial biotechnology and related disciplines. Similarly, a large number of textbooks are available to describe the appli- tions of these technologies in industry. However, there has been a general lack of appreciation of the significant developments in downstream processing and isolation technology, the need for which is largely driven by the stringent re- latory requirements for purity and quality of injectable biopharmaceuticals. This is particularly reflected by the general absence of coverage of this s- ject in many biotechnology and related courses in educational institutions. For a considerable while I have felt that there is increasing need for an introductory text to various aspects of downstream processing, particularly with respect to the needs of the biopharmaceutical and biotechnology ind- try. Although there are numerous texts that cover various aspects of protein purification techniques in isolation, there is a need for a work that covers the broad range of isolation technology in an industrial setting. It is anticipated that Downstream Processing of Proteins: Methods and Protocols will play a small part in filling this gap and thus prove a useful contribution to the field. It is also designed to encourage educational strategists to broaden the coverage of these topics in industrial biotechnology courses by including accounts of this important and rapidly developing element of the industrial process.
This book provides an overview of the immobilization of viable and non-viable cells, proteins, enzymes and active molecules, and their interaction with natural or synthetic carriers for performing biochemical and chemical reactions in vivo and in vitro.
The book traces the evolution of biotechnology in the broadest sense from prehistoric organismal manipulation by our first settled ancestors through to speculation about future directions for the technology as it increasingly intersects with other high technologies such as IT and Nanotech. The trajectory is demonstrated by various events throughout history that have intersected or built on one another to lead to the forward progression of a technology. Obviously, with such a broad canvas much selectivity is involved in the choices made to advance the narrative and, while the subjects chosen are not capricious, they are influenced by the author's perspective. In addition, I have made some attempt, where validated resources exist, to present my perspective on how individual personalities and their particular contextual experience influenced the direction in which they carried the science or the science carried them.
Volume 18 explores the latest advances in recombinant DNA molecule techniques and how they are revolutionizing basic research in biology. Chapters discuss obtaining good expression of genetically engineered pest-resistant genes introduced in crop plants, cloning DNAs containing palindromes, and identifying genes by 3' terminal exon trapping and much more.
This collection of comprehensive reviews describes the present knowledge of the enzyme mechanisms involved in the biodegradation of wood and wood components, cellulose, hemicelluloses and lignin by both fungi and bacteria. The extensive knowledge, presented in this volume, was developed in laboratories world-wide over the last few decades and constitutes the foundation for present and future biotechnology in the pulp and paper industry.
This Volume presents protocols for systems and synthetic biology applications in the field of hydrocarbon and lipid microbiology. It complements another Volume that describes generic protocols for wet experimental and computer-based systems and synthetic biology studies. The protocols in this Volume demonstrate how to employ systems and synthetic biology approaches in the design of microbes for the production of esters, isoprenoids, hydrophobic polymers, rhamnolipid biosurfactant, and peptide antimicrobial and thioether-stabilised molecules. Also presented is a protocol for the engineering of transcription factor-based biosensors for intracellular products, and another for the creation of a synthetic hydroxylase with novel activity for the selective oxyfunctionalisation of linear alkanes. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Biosensors offer clear and distinct advantages over standard analytical methods for the direct monitoring of environmental pollutants in the field, such as real-time detection with minimum sample preparation and handling. The present book highlights recent advantages that will be of great value to a range of scientists, researchers and students dealing with analytical and environmental chemistry and biosensor technology. It presents recent trends in analytical methodology for the determination of indoor and outdoor pollutants, advances in DNA, biological and recognition-based sensors, examples of biosensors for use in field and water analysis, biosensors based on non-aqueous systems, and recent advances in the miniaturisation and micromachining of biosensors.
In Cellular and Subcellular Nanotechnology: Methods and Protocols expert researchers in the field detail the most recent advances which have been made in utilizing the enormous potential of nanotechnology for probing, imaging and manipulating life on a cellular and subcellular level. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and Practical, Cellular and Subcellular Nanotechnology: Methods and Protocols seeks to aid scientists in the further study of applying nanotechnology to all areas of biomedical sciences.
Volume 17 of this highly acclaimed series features discussions on a new method of mapping and manipulating DNA with the use of RecA protein in combination with restriction enzymes, RNA pseudoknots, and platelet-derived growth factors and their receptors in cell differentiation and cell cycle control.
For physicians, surgeons, and scientists working on cardiovascular disorders, Applications of Biotechnology in Cardiovascular Therapeutics serves as an invaluable reference by collecting the essential writings of Dr. Kewal K. Jain on the topics of biotechnology as they relate to cardiovascular disease. This thorough volume includes such subjects as biotechnology and therapeutic delivery to the cardiovascular system, cell-selective targeted drug delivery, cell and gene therapies, including antisense and RNA interference, cutting-edge gene therapy approaches, as well as personalized cardiology as a way of integrating new technologies into the selection of the best possible treatment for an individual patient. Selected references from recent literature are collected for each chapter, and the text is supplemented by a variety of useful tables and figures. Comprehensive and up-to-date, Applications of Biotechnology in Cardiovascular Therapeutics will be tremendously useful for those working in life sciences and the pharmaceutical sciences, and the inclusion of some basics of cardiovascular diseases will greatly benefit nonmedical readers as well.
Following the routinization of assisted reproduction in the industrialized world, technologies such as in vitro fertilization, preimplantation genetic diagnosis, and DNA-based paternity testing have traveled globally and are now being offered to couples in numerous non-Western countries. This volume explores the application and impact of these advanced reproductive and genetic technologies in societies across the globe. By highlighting both the cross-cultural similarities and diverse meanings that technologies may assume as they enter multiple contexts, the book aims to foster understanding of both the technologies and the settings. Enhanced by cross-cultural perspectives, the book addresses the challenges that globalization presents to local understandings of science, technology, and medicine.
Providing overview, depth, and expertise, Essentials of Functional Foods is the key resource for all involved in the exciting and rapidly growing arena of functional foods. Every important aspect of functional foods and ingredients is covered, from technology, product groups, and nutrition, to safety, efficacy, and regulation. The editors and their expert contributors emphasize broadly based principles that apply to many functional foods. This book is essential reading for food scientists, researchers, and professionals who are developing, researching, or working with functional foods and ingredients in the food, drug, and dietary supplement industry.
Murray's new handbook on Gene Transfer and Expression Protocols
sets forth both current and new methodologies in a clear, concise,
easy-to-follow manner, following the successful formula of the
classic volumes in Humana's Methods in Molecular Biology series.
Each chapter is devoted to a thorough exposition of a single
technique. An Introduction explains the significance of the
protocol and provides background information. A Materials section
lists all the requirements for the technique discussed. A Methods
section details the procedure in a step-by-step protocol. A Notes
section alerts the reader to pitfalls that may be encountered, as
well as alternatives that may be used for successful completion of
the experiment. Each technique is designed to guarantee optimum
results.
Bioinformatics is an integrative field of computer science, genetics, genomics, proteomics, and statistics, which has undoubtedly revolutionized the study of biology and medicine in past decades. It mainly assists in modeling, predicting and interpreting large multidimensional biological data by utilizing advanced computational methods. Despite its enormous potential, bioinformatics is not widely integrated into the academic curriculum as most life science students and researchers are still not equipped with the necessary knowledge to take advantage of this powerful tool. Hence, the primary purpose of our book is to supplement this unmet need by providing an easily accessible platform for students and researchers starting their career in life sciences. This book aims to avoid sophisticated computational algorithms and programming. Instead, it will mostly focus on simple DIY analysis and interpretation of biological data with personal computers. Our belief is that once the beginners acquire these basic skillsets, they will be able to handle most of the bioinformatics tools for their research work and to better understand their experimental outcomes. The third volume is titled In Silico Life Sciences: Agriculture. It focuses on plant genetic, genomic, transcriptomic, proteomic and metabolomics data. Using examples of new crop diseases-emergence, crop productivity and biotic/abiotic stress tolerance, this book illustrates how bioinformatics can be an integral components of modern day plant science research.
Collaboration plays an important role in the early development of com- nies. Among others, they provide opportunities to combine complementary resources, develop additional competencies, and generate valuable signals for investors. They are particularly important for biotechnology firms, whose resource base often is not sufficient to realize the market potential of their R&D findings. Strategic alliances thus are an integral part of the business model of most biotechnology companies, but their economic re- vance is not yet fully understood, since research has thus far neglected most industry-specific drivers of alliance value. Based on an event study, Hady Farag analyzes the capital-market re- tion to alliance-related news announcements and assesses their complex - fects on company value. In this regard, the present work represents the first comprehensive study of European biotechnology alliances. In addition to this unique database, the research approach and techniques in sample - lection, econometric and cross-sectional analyses are state-of-the-art. The author develops and empirically tests an integrative dynamic model of collaborative value drivers. These reflect the specific characteristics of biotechnology firms and biotechnology alliances. Moreover, the work - tends to so far entirely unresearched dynamic aspects of alliances, such as the value of contractual flexibilities, the impact of environmental unc- tainty, and the evolution of alliances over time. Overall, Hady Farag's work underscores the need to consider pluralistic influences on the value of collaborative ventures.
Controlled radical polymerization techniques for molecular imprinting, by Mark E. Byrne From bulk polymers to nanoparticles, by Lei Ye Post-imprinting and in-cavity functionalization, by Toshifumi Takeuchi Characterization of MIPs (affinity, selectivity, site heterogeneity...), by Richard Ansell Theoretical aspects and computer modelling, by Ian Nicholls MIPs in aqueous environments, by Bin Lu MIPs for binding macromolecules, by Kenneth J. Shea Solid phase extraction, by Ecevit Yilmaz Sensors, by Sergey A. Piletsky MIPs for catalysis and synthesis, by Marina Resmini Wastewater treatment, by Bo Mattiasson MIPs as tools for bioassays, biotransformation and drug delivery, by Meiping Zhao
We are in a phase of the evolution of biotechnology in which the true and potential commercial importance of carbohydrates is becoming appre- ated more fully. Progress in providing hard facts to establish the commercial value ofpolysaccharides and oligosaccharides is limited, as always, by lack of funding and by a relative shortage of skilled practitioners in the production and analysis of those materials. Carbohydrate science has a reputation, not unmerited, for technical difficulty owing to the structural similarity of the many monosaccharide monomers and the potential, and real, complexity of oligosaccharides and polysaccharides, particularly heterosaccharides conta- ing many different monomers. Modem analytical and synthetic methods, in many cases using enzyme technology, are beginning to allow this complexity to be unraveled. Carbohydrate Biotechnology Protocols is aimed at those newcomers who have an interest in the production and use of carbohydrate materials, but have shied away from involvement for lack of detailed descriptions of appropriate methods, including the type of practical hints that may be provided by those skilled in those methods, but that are rarely described in research papers. The majority of the contributions to this book conform to the established format of the Methods in Biotechnology series. They begin with the theoretical and c- mercial background to the method or group of methods, provide a list of the reagents and equipment required for the procedure, then give a detailed st- by-step description of how to carry out the protocol.
Since 9/11 and the U.S. anthrax attacks, public, and policy concerns about the security threats posed by biological weapons has increased significantly. As a result, there are now active international deliberations about what restrictions should be placed on the openness of scientific research. "Biotechnology, Security and the Search for Limits" examines these security implications for life science research as well as the methodological issues associated with conducting social research. In doing so the book considers the place of biological and social research in creating and responding to societal problems through drawing on diverse academic traditions such as discourse analysis, social problems studies, philosophy, action research, science and technology studies, politics, and public policy.
In Human Cloning a panel of distinguished philosophers, medical
ethicists, religious thinkers, and social critics tackle the thorny
problems raised by the now real possibility of human cloning. In
their wide ranging reviews, the distinguished contributors
critically examine the major arguments for and against human
cloning, probe the implications of such a procedure for society,
and critically evaluate the "Report and Recommendations of the
National Bioethics Advisory Commission." The debate includes both
religious and secular arguments, as well as an outline of the
history of the cloning debate and a discussion of human cloning's
impact on our sense of self and our beliefs about the meaning of
life.
After the 1986 and 1989 volumes, this is the third volume on biotechnology for propagation of trees. Comprising 28 chapters contributed by international experts the book deals with fruit, ornamental, and forest trees, such as Black cherry, Sour cherry, Pomegranate, Loquat, "Ficus," Yellow poplar, Horse chestnut, Judas tree, Linden tree, Saskatoons, Taiwan sassafras, Plane-tree, Rattans, Bamboos, Engelmann spruce, White spruce, Larches, Hinoki cypress, Western redcedar, and various types of pines, i.e. Jack, Carribean, Eldarica, Slash, Egg-cone, Maritime, Ponderosa, Eastern white, Loblolly pine. Trees III is an excellent reference book for scientists, educators, and students of forestry, botany, genetics, and horticulture, who are interested in tree biotechnology. |
You may like...
Feature Extraction, Construction and…
Huan Liu, Hiroshi Motoda
Hardcover
R5,378
Discovery Miles 53 780
Embroidery - A Modern Guide to Botanical…
Arounna Khounnoraj
Paperback
Genomics and the Global Bioeconomy
Catalina Lopez Correa, Adriana Suarez-Gonzalez
Paperback
R2,943
Discovery Miles 29 430
Handbook of Research Methods for…
Cameron Newton, Ruth Knight
Hardcover
R5,994
Discovery Miles 59 940
|