Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Biochemical engineering > Biotechnology
Metabolic engineering is a rapidly evolving field that is being applied for the optimization of many different industrial processes. In this issue of Advances in Biochemical Engineering/Biotechnology, developments in different areas of metabolic engineering are reviewed. The contributions discuss the application of metabolic engineering in the improvement of yield and productivity - illustrated by amino acid production and the production of novel compounds - in the production of polyketides and extension of the substrate range - and in the engineering of S. cerevisiae for xylose metabolism, and the improvement of a complex biotransformation process.
The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. " Bacteria in Agrobiology: Plant Growth Responses " describes the application of various bacteria in plant growth promotion and protection, including symbiotic, free living, rhizospheric, endophytic, methylotrophic, diazotrophic and filamentous species.
This volume will cover a series of reviews on stem cells including adult and embryonic stem cells. Speakers were invited to present these talks during the Stem Cell Symposia in fall of 2010, in Samsun, Turkey. Unique aspect of this volume is that it brings a multidisciplinary aspect of stem cells extracted from a symposium.
Medicinal Plants, Volume 6 of the Genetic Resources, Chromosome Engineering, and Crop Improvement series summarizes landmark research and describes medicinal plants as nature's pharmacy. Highlights Examines the use of molecular technology for maintaining authenticity and quality of plant-based products Details reports on individual medicinal plants including their history, origin, genetic resources, cytogenetics, and varietal improvement through conventional and modern methods, and their use in pharmaceutical, cosmeceutical, nutrition, and food industries Explains how to protect plants with medicinal properties from deforestation, urbanization, overgrazing, pollution, overharvesting, and biopiracy Brings together information on germplasm resources of medicinal plants, their history, taxonomy and biogeography, ecology and biodiversity, genetics and breeding, exploitation, and utilization in the medicine and food industries Written by leading international experts and an innovative panel of scientists, Medicinal Plants offers the most comprehensive and up-to-date information on medicinal plant genetic resources and their increasing importance in pharmaceutical and cosmeceutical industries, medicine, and nutrition around the world. Includes eight-page color insert more than 25 full color figures.
In this well-illustrated reference, contributors summarize current research on sulfate-reducing bacteria and examine their relationship to biotechnology processes. This approach enables researchers to identify and define appropriate questions for future research. Chapters examine the biochemical and physiological characteristics of sulfate-reducing eubacteria and archaebacteria and review environmental and industrial activities of these bacteria. This volume features the first review on bioremediation by sulfate-reducing bacteria.
Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with ultrasound and microwave irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. "Production of Biofuels and Chemicals with Ultrasound" and "Production of Biofuels and Chemicals with Microwave" are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume "Ultrasound" provides current research advances and prospects in mechanistic principles of acoustic cavitation in sonochemistry, physical and chemical mechanisms in biofuel synthesis, reactor design for transesterification and esterification reactions, lipid extraction from algal biomass, microalgae extraction, biodiesel and bioethanol synthesis, practical technologies and systems, pretreatment of biomass waste sources including lignocellulosic materials, manures and sludges for biogas production, vibration-assisted pelleting, combined chemical-mechanical methods, valorization of starch-based wastes and techno-economic methodology. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes "Ultrasound" and "Microwave" are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Presenting the state of the art of tissue culture and in vitro propagation of vegetable and tuber crops, medicinal and aromatic plants, fibre and oilseed crops, and grasses, this book complements the previous two volumes on High-Tech and Micropropagation, which concentrated on special techniques (Vol.17) and trees and bushes of commercial value (Vol.18). The specific plants covered here include asparagus, lettuce, horse radish, cucumber, potato, cassava, sweet potato, artichoke, yams, cardamom, fennel, celery, thyme, leek, mentha, turmeric, lavender, agave, yucca, cotton, jute, sunflower, ryegrass, zoysiagrass, and various species of "Aconitum," "Artemisia," "Camelia," "Centaurium," "Digitalis," "Dioscorea," "Glehnia," "Levisticum," "Parthenium," and "Pinella." The book is of use to advanced students, teachers and research workers in the field of pharmacy, horticulture, plant breeding and plant biotechnology in general, and also to individuals interested in industrial micropropagation.
Animal cell technology is a growing discipline of cell biology which aims not only to understand structures, functions and behaviors of differentiated animal cells but also to ascertain their abilities to be used for industrial and medical purposes. The goal of animal cell technology includes accomplishments of clonal expansion of differentiated cells with useful ability, optimization of their culture conditions, modulation of their ability for production of medically and pharmaceutically important proteins, and the application of animal cells to gene therapy and artificial organs. This Volume gives the readers a complete review of the present state of the art in Japan. The Proceedings will be useful for cell biologists, biochemists, molecular biologists, immunologists, biochemical engineers and other disciplines related to animal cell culture, working either in academic environments or in industries of biotechnology and pharmacy.
This book presents the latest findings on amino acid fermentation and reviews the 50-year history of their development. The book is divided into four parts, the first of which presents a review of amino acid fermentation, past and present. The second part highlights selected examples of amino acid fermentation in more detail, while the third focuses on recent advanced technologies. The last part introduces readers to several topics for future research directions in amino acid production systems. A new field, "amino acid fermentation", was created by the progress of academic research and industrial development. In 1908, the Japanese researcher Kikunae Ikeda discovered glutamate as an Umami substance. Then a new seasoning, MSG (monosodium glutamate), was commercialized. Although glutamate was extracted from the hydro-lysate of wheat or soybean in the early days, a new production method was subsequently invented - "fermentation" - in which glutamate is produced from sugars such as glucose by a certain bacterium called Corynebacterium. The topic of this volume is particularly connected in a significant way with biochemical, biotechnological, and microbial fields. Both professionals in industry and an academic audience will understand the importance of this volume.
The book targets new advances in areas of treatment and drug delivery sciences for tuberculosis. It covers advances in drug therapy and drug targeting that focus on innovative trend defining technologies and drug delivery platforms in the understanding of host-pathogens relationship for providing better therapy. A wide variety of novel and nano-formulations using promising technologies are being explored to deliver the drug via different administration routes. This book It addresses the gap between new approaches and old treatment modalities and how they are superior in pharmacological performance when tested in in-vitro and in-vivo. Audience from wide range group like from researchers to regulatory bodies can benefit from the compiled information to find out patient needs and current research advances in the field of tuberculosis research.
Because of many misconceptions, the biological drug manufacturing industry does not fully utilize disposable components, despite their wide availability. These misconceptions include concerns for the quality of materials, running costs, scalability, the level of automation possible, and the training of staff needed to include these components in existing bioprocessing systems. Not fully realizing the long-term benefits, many manufacturers are unwilling to discard investments made in fixed equipment and traditional stainless steel systems. Regulatory and environmental concerns, however, will eventually compel manufacturers to adopt disposable systems. Making a strong case for disposables, Disposable Bioprocessing Systems demonstrates the true potential of these systems. Written by a researcher and professor with hands-on experience in designing, establishing, and validating biological manufacturing facilities worldwide, and creating model facilities using maximum disposable technology, this book is the first comprehensive introduction to understanding disposable systems. It gives an overview of the current state of the disposable bioprocessing industry, resolves all controversial issues, and guides readers in choosing disposable components that meet their needs. An important chapter on safety addresses facts and myths about the use of plastics and elastomers-including the issue of leaching-and how to ensure regulatory compliance. Helping readers understand their choices, the book describes the equipment and systems available to prepare the starting materials for the manufacturing of biological drugs-from disposable containers to filters. The author also discusses costs, regulations, and concerns about waste disposal, and shares his predictions for the future of the disposable bioprocessing industry. A practical manual for those interested in the transition to disposable systems, this book will also interest students of bioprocessing. It offers a timely view of disposable bioprocessing technology as a "game changer" that will facilitate developing new drugs and conducting research in the emerging field of stem cells and gene therapy.
The aim of this volume is to provide a comprehensive overview of optical tweezers setups, both in practical and theoretical terms, to help biophysicists, biochemists, and cell biologists to build and calibrate their own instruments and to perform force measurements on mechanoenzymes both in isolation in vitro and in living cells. Chapters have been divided in three parts focusing on theory and practical design of optical tweezers, detailed protocols for performing force measurements on single DNA- and microtubule/actin-associated mechanoenzymes in isolation, and describing recent advances that have opened up quantitative force measurements in living cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Optical Tweezers: Methods and Protocols aims help to further expand the accessibility and use of optical traps by scientists of diverse disciplines.
Genetically Engineered Marine Organisms: Environmental and Economic Risks and Benefits provides a comprehensive, multidisciplinary overview of the environmental, economic, and regulatory implications of advances in marine biotechnology. The book has been specifically designed to bridge the gap between the rapidly advancing marine biotechnology industry and the government agencies that are responsible for risk assessment and regulation. Editors Raymond Zilinskas and Peter Balint have brought together experts in risk assessment, marine ecology, biotechnology, economics, and the law, to provide a unique way of examining complex issues in marine biotechnology. The contributors present innovative and challenging recommendations for protecting public health and the environment, while encouraging the development of beneficial new products in the field of marine biotechnology. As an added feature, each chapter includes a comprehensive, up-to-date bibliography. Genetically Engineered Marine Organisms: Environmental and Economic Risks and Benefits will prove invaluable to students, researchers and public employees involved with risk assessment. The book will appeal to industry personnel involved with the preparation of marine biotechnology products; scientists and administrators involved with applied research in marine biotechnology; policy analysts concerned with the economics of marine fisheries; and university personnel who focus on the interaction of risk, technology, and public policy.
Nanobiotechnology of Biomimetic Membranes describes the current state of research and development in biomimetic membranes for nanobiotechnology applications. The application areas in nanobiotechnology range from novel nanosensors, to novel methods for sorting and delivering bio-active molecules, to novel drug-delivery systems. The success of these applications relies on a good understanding of the interaction and incorporation of macromolecules in membranes and the fundamental properties of the membrane itself.
The earliest experimental data on an oxygen-free glass have been published by Schulz-Sellack in 1870 [1]. Later on, in 1902, Wood [2], as well as Meier in 1910 [3], carried out the first researches on the optical properties of vitreous selenium. The interest in the glasses that exhibit transparency in the infrared region of the optical spectrum rose at the beginning of the twentieth century. Firstly were investigated the heavy metal oxides and the transparency limit was extended from (the case of the classical oxide glasses) up to wavelength. In order to extend this limit above the scientists tried the chemical compositions based on the elements of the sixth group of the Periodic Table, the chalcogens: sulphur, selenium and tellurium. The systematic research in the field of glasses based on chalcogens, called chalcogenide glasses, started at the middle of our century. In 1950 Frerichs [4] investigated the glass and published the paper: "New optical glasses transparent in infrared up to 12 . Several years later he started the study of the selenium glass and prepared several binary glasses with sulphur [5]. Glaze and co-workers [6] developed in 1957 the first method for the preparation of the glass at the industrial scale, while Winter-Klein [7] published reports on numerous chalcogenides prepared in the vitreous state.
This volume provides comprehensive dry and wet experiments, methods, and applications on nanopore sequencing. Chapters guide readers through bioinformatic procedures, genome sequencing, analysis of repetitive regions, structural variations, rapid and on-site microbial identification, epidemiology, and transcriptome analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Nanopore Sequencing: Methods and Protocols aims to be comprehensive guide for researchers.
Plant innate immunity is a potential surveillance system of plants and is the first line of defense against invading pathogens. The immune system is a sleeping system in unstressed healthy plants and is activated on perception of the pathogen-associated molecular patterns (PAMP; the pathogen s signature) of invading pathogens. The PAMP alarm/danger signals are perceived by plant pattern-recognition receptors (PRRs). The plant immune system uses several second messengers to encode information generated by the PAMPs and deliver the information downstream of PRRs to proteins which decode/interpret signals and initiate defense gene expression. This book describes the most fascinating PAMP-PRR signaling complex and signal transduction systems. It also discusses the highly complex networks of signaling pathways involved in transmission of the signals to induce distinctly different defense-related genes to mount offence against pathogens."
Animal cell technology is a growing discipline of cell biology which aims to understand the structure, function and behaviour of differentiated animal cells, and especially the development of such abilities as are useful for industrial purposes. These developments range from clonal expansion of differentiated cells with useful abilities, to optimization of cell culture on industrial scale and modulation of the cells' abilities to produce drugs and monoclonal antibodies. The sixth volume in this series gives a complete review of today's state of the art in Japan, a country where this field is especially well advanced. It will be of interest to cell biologists, biochemists, molecular biologists, immunologists and other disciplines related to animal cell culture, working in the academic environment as well as in (biotechnology or pharmaceutical) industry.
The concept of 'biomineralization' signifies mineralization processes that take place in close association with organic molecules or matrices. The awareness that mineral formation can be guided by organic molecules notably contributed to the understanding of the formation of the inorganic skeletons of living organisms. Modern electron microscopic and spectroscopic analyses have successfully demonstrated the participation of biological systems in several mineralization processes, and prominent examples include the formation of bio-silica in diatoms and sponges. This insight has already made the application of recombinant technology for the production of valuable inorganic polymers, such as bio-silica, possible. This polymer can be formed by silicatein under conditions that cannot be matched by chemical means. Similarly, the efforts described in this book have elucidated that certain organisms, bacteria in deep-sea polymetallic nodules and coccoliths in seamount crusts, are involved in the deposition of marine minerals. Strategies have already been developed to utilize such microorganisms for the biosynthesis and bioleaching of marine deposits. Moreover, studies reveal that bio-polymers enhance the hydroxyapatite formation of bone-forming cells and alter the expression of important regulators of bone resorption, suggesting a potential for bone regeneration and treatment / prevention of osteoporosis.
As recently as 20 years ago, ceramics were widely ignored as potential biomaterials. Interest in bioceramics has increased dramatically over the past decade to the point where it is anticipated they will be the materials of choice for many orthopedic, otologic, maxillofacial and dental applications during the decade of the '90s. Alumina ceramics are being used extensively as articulating comJ1onents in total joint prostheses because of Ithe materials low coefficient of friction and excellent wear resistances. Alumina ceramics are also being used in dental and maxillofacial applica tions because of the materials excellent biocompatibility. Because of its ability to chemically bond to bone, hydroxyapatite is rapidly becoming the material of choice for many dental and maxillofacial applications. For the past decade, one of the most widely researched topics in the field of orthopedics has been the clinical evaluation of joint prostheses based upon stabili zation via tissue ingrowth. It appears that the next generation of joint prostheses will be based upon direct chemically bonding to bone using hydroxyapatite, surface-active glass or surface-active glass ceramics coatings. Resorbable bioceramics are limited to temporary bone space fillers, periodontal pockets treatment and resorbable pharma ceutical delivery systems. Bioceramics is a comprehensive reference textbook covering the history of bio ceramics, present status of bioceramics, and prediction for future use of bioceramics. This book will serve as a major reference for students, as well as experienced bio material researchers. The book presents the state-of-the-art of bioceramics as of 1991."
Examining the chemical modification of biological polymers and the emerging applications of this technology, Chemical Modification of Biological Polymers reflects the change in emphasis in this subsection of biotechnology from the study of protein structure and function toward applications in therapeutics and diagnostics. Highlights
This book covers the basics on the organic chemistry underlying the chemical modification of biopolymers, including updates on the use of various chemical reagents. It describes the current status of chemical modification of biological polymers and emerging applications of this technology in biotechnology. These technologies are important for the manufacture of conjugate proteins used in drug delivery, for the preparation of nucleic acid microarrays, and for the preparation of hydrogels and other materials used in tissue engineering.
This book serves to highlight the seamless integration of the sciences leading to sustainable technologies. Chemical engineering is one of the major disciplines catering to the societal needs in the fields of energy, environment and materials. The chapters of this book have been selected to encompass the latest in industrial biotechnology and biochemical engineering principles and applications. The chapters are included here after careful review for content and depth. The book focuses on the relatively new areas of molecular biotechnology and nanotechnology which have a strong impact at the fundamental and process levels in chemical engineering. The book also covers analytical procedures, experimental techniques and process analysis in bioprocessing, bioremediation, green separation methods, and emerging nanoparticle applications. It should be useful to students, academicians, and practitioners alike.
Focused manuscript on the potential use/role of miRNAs in bioprocessing, specifically the production of complex proteins in mammalian cells. With that in mind I propose a draft list of topics/chapters along the following lines: Intro on CHO/bioprocessing/engineering challenges to set scene, Genomic organization, biogenesis and mode of action, Identifying miRNA targets: Computational prediction, transcriptomics, proteomices, UTR analysis, etc., miRNA expression in Chinese Hamster Ovary cells, miRNAs as engineering targets: pathway manipulation to impact bioprocess phenotypes, miRNAs as biomarkers, Detection methods: Northern, PCR, hybridization arrays, Next Gen Seq, Manipulation of expression in cultured cells: Transient/stable disregulation, Knockout. |
You may like...
Biomaterials for Photocatalysis…
Rafael Luque, Awais Ahmad, …
Hardcover
R4,713
Discovery Miles 47 130
Wuhan Cover-Up - How US Health Officials…
Robert F. Kennedy Jr
Hardcover
Importance of Chirality to Flavor…
Gary Takeoka, Karl-Heinz Engel
Hardcover
R5,407
Discovery Miles 54 070
Introduction to Biotechnology, Global…
William Thieman, Michael Palladino
Paperback
R1,912
Discovery Miles 19 120
|