![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology
"Science is fun " Is the motto of this fun-filled book by Prof
Reinhard Renneberg. Do you know that in Japan, washing machines
have no "cooking program" thanks to enzyme detergents? How to make
German-style beer from rice? How do you make real snow with dead
frost-bacteria? Is using bio-ethanol as a car fuel going against
our environment? How can you clone your neighbor's beautiful cat?
How to eliminate breast cancer genes before a baby girl is born?
Can the financial crisis be solved by breeding better stock market
traders? How to measure the fitness of students? The questions are
endless.
-Integration of Systems Biology with Bioprocess Engineering: L-Threonine Production by Systems Metabolic Engineering of Escherichia Coli, By Sang Yup Lee and Jin Hwan Park; -Analysis and Engineering of Metabolic Pathway Fluxes in Corynebacterium glutamicum, By Christoph Wittmann; -Systems Biology of Industrial Microorganisms, Marta Papini, Margarita Salazar, and Jens Nielsen; -De Novo Metabolic Engineering and the Promise of Synthetic DNA, By Daniel Klein-Marcuschamer, Vikramaditya G. Yadav, Adel Ghaderi, and Gregory N. Stephanopoulos; -Systems Biology of Recombinant Protein Production in Bacillus megaterium, Rebekka Biedendieck, Boyke Bunk, Tobias Furich, Ezequiel Franco-Lara, Martina Jahn, and Dieter Jahn; -Extending Synthetic Routes for Oligosaccharides by Enzyme, Substrate and Reaction Engineering; By Jurgen Seibel, Hans-Joachim Jordening, and Klaus Buchholz; -Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds; By Andrea Weckbecker, Harald Groger, and Werner Hummel;
This book provides a unique and up-to-date insight into the biopharmaceutical industry. Largely written by industrial authors, its scope is multidisciplinary, rendering it an ideal reference source for students undertaking advanced undergraduate or postgraduate courses in biotechnology, pharmaceutical science, biochemistry, or medicine.
Applied Environmental Biotechnology: Present Scenario and Future Trends is designed to serve as a reference book for students and researchers working in the area of applied environmental science. It presents various applications of environmental studies that involve the use of living organisms, bioprocesses engineering technology, and other fields in solving environmental problems like waste and waste waters. It includes not only the pure biological sciences such as genetics, microbiology, biochemistry and chemistry but also from outside the sphere of biology such as chemical engineering, bioprocess engineering, information technology, and biophysics. Starting with the fundamentals of bioremediation, the book introduces various environmental applications such as bioremediation, phytoremediation, microbial diversity in conservation and exploration, in-silico approach to study the regulatory mechanisms and pathways of industrially important microorganisms biological phosphorous removal, ameliorative approaches for management of chromium phytotoxicity, sustainable production of biofuels from microalgae using a biorefinery approach, bioelectrochemical systems (BES) for microbial electroremediation and oil spill remediation. The book has been designed to serve as comprehensive environmental biotechnology textbooks as well as wide-ranging reference books. Environmental remediation, pollution control, detection and monitoring are evaluated considering the achievement as well as the perspectives in the development of environmental biotechnology. Various relevant articles are chosen up to illustrate the main areas of environmental biotechnology: industrial waste water treatment, soil treatment, oil remediation, phytoremediation, microbial electro remediation and development of biofuels dealing with microbial and process engineering aspects. The distinct role of environmental biotechnology in future is emphasized considering the opportunities to contribute with new approached and directions in remediation of contaminated environment, minimising waste releases and development pollution prevention alternatives at before and end of pipe.
Pharmaceutical Biotechnology is a unique compilation of reviews addressing frontiers in biologicals as a rich source for innovative medicines. This book fulfills the needs of a broad community of scientists interested in biologicals from diverse perspectives-basic research, biotechnology, protein engineering, protein delivery, medicines, pharmaceuticals and vaccinology. The diverse topics range from advanced biotechnologies aimed to introduce novel, potent engineered vaccines of unprecedented efficacy and safety for a wide scope of human diseases to natural products, small peptides and polypeptides engineered for discrete prophylaxis and therapeutic purposes. Modern biologicals promise to dramatically expand the scope of preventive medicine beyond the infectious disease arena into broad applications in immune and cancer treatment, as exemplified by anti-EGFR receptors antibodies for the treatment of breast cancer. The exponential growth in biologicals such as engineered proteins and vaccines has been boosted by unprecedented scientific breakthroughs made in the past decades culminating in an in-depth fundamental understanding of the scientific underpinnings of immune mechanisms together with knowledge of protein and peptide scaffolds that can be deliberately manipulated. This has in turn led to new strategies and processes. Deciphering the human, mammalian and numerous pathogens' genomes provides opportunities that never before have been available-identification of discrete antigens (genomes and antigenomes) that lend themselves to considerably improved antigens and monoclonal antibodies, which with more sophisticated engineered adjuvants and agonists of pattern recognition receptors present in immune cells, deliver unprecedented safety and efficacy. Technological development such a nanobiotechnologies (dendrimers, nanobodies and fullerenes), biological particles (viral-like particles and bacterial ghosts) and innovative vectors (replication-competent attenuated, replication-incompetent recombinant and defective helper-dependent vectors) fulfill a broad range of cutting-edge research, drug discovery and delivery applications. Most recent examples of breakthrough biologicals include the human papilloma virus vaccine (HPV, prevention of women genital cancer) and the multivalent Pneumoccocal vaccines, which has virtually eradicated in some populations a most prevalent bacterial ear infection (i.e., otitis media). It is expected that in the years to come similar success will be obtained in the development of vaccines for diseases which still represent major threats for human health, such as AIDS, as well as for the generation of improved vaccines against diseases like pandemic flu for which vaccines are currently available. Furthermore, advances in comparative immunology and innate immunity revealed opportunities for innovative strategies for ever smaller biologicals and vaccines derived from species such as llama and sharks, which carry tremendous potential for innovative biologicals already in development stages in many pharmaceutical companies. Such recent discoveries and knowledge exploitations hold the promise for breakthrough biologicals, with the coming decade. Finally, this book caters to individuals not directly engaged in the pharmaceutical drug discovery process via a chapter outlining discovery, preclinical development, clinical development and translational medicine issues that are critical the drug development process. The authors and editors hope that this compilation of reviews will help readers rapidly and completely update knowledge and understanding of the frontiers in pharmaceutical biotechnologies.
Authoritative investigators active in the discovery, development,
and application of biological anti-infective agents concisely
review their use and potential in preventing and treating human
disease. Focusing on biotherapeutic entities that have been tested
in controlled studies, the prominent experts illuminate the
scientific underpinnings of their therapeutic power, assess their
possible risks in the treatment of infectious diseases, and outline
the research needed to better define their effectiveness. In
addition, they also consider how biotherapeutic agents may be
genetically engineered for maximum intestinal and vaginal
production of bioactive substances in vivo. Biotherapeutic Agents
and Infectious Diseases brings together all the evidence needed to
understand and capitalize on the considerable promise of this
significant new class of biotherapeutic entities.
Food proteomics is one of the most dynamic and fast-developing areas in food science. The goal of this book is to be a reference guide on the principles and the current and future potential applications of proteomics in food science and technology. More specifically, the book will discuss recent developments and the expected trends of the near future in food proteomics. The book will be divided into two parts. The first part (7 chapters) will focus on the basic principles for proteomics, e.g., sample preparation, such as extraction and separation techniques, analytical instrumentation currently in use, and available databases for peptide and protein identification. The second part of the book (26 chapters) will focus on applications in foods. It will deal with quality issues related to post-mortem processes in animal foods and quality traits for all foods in general, as well as the identification of bioactive peptides and proteins, which are very important from the nutritional point of view. Furthermore, consumers are now extremely susceptible to food safety issues, and proteomics can provide reassurance with different safety aspects, such as food authenticity, detection of animal species in the food, and identification of food allergens. All of these issues will be covered in this book. It is also worth noting that both editors are internationally recognized experts in the field of food science, and both have edited numerous food science books and handbooks.
In Synthetic Biology, expert researchers in the field provide the latest developments in molecular biology techniques used in Synthetic Biology. Focusing on computational tools that will aid in systematising the design and construction of parts and systems. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Biology seeks to aid scientists in the further study of developing new biological components and systems.
The bioactive compounds of plants have world-wide applications in pharmaceutical, nutraceutical and food industry with a huge market. In this book, a group of active researchers have addressed on the most recent advances in plant cell and organ cultures for the production of biomass and bioactive compounds using bioreactors. Tremendous efforts have been made to commercialize the production of plant metabolites by employing plant cell and organ cultures in bioreactors. This book emphasizes on the fundamental topics like designing of bioreactors for plant cell and organ cultures, various types of bioreactors including stirred tank, airlift, photo-bioreactor, disposable bioreactor used for plant cell and organ cultures and the advantages and disadvantages of bioreactor cultures. Various strategies for biomass production and metabolite accumulation have been discussed in different plant systems including Korean/Chinese ginseng, Siberian ginseng, Indian ginseng, Echinacea, St. John's wort, Noni, Chinese licorice, Caterpillar fungus and microalgae. Researches on the industrial application of plant cells and organs with future prospects as well as the biosafety of biomass produced in bioreactors are also described. The topics covered in this book, such as plant cell and organ cultures, hairy roots, bioreactors, bioprocess techniques, will be a valuable reference for plant biotechnologists, plant biologists, pharmacologists, pharmacists, food technologists, nutritionists, research investigators of healthcare industry, academia, faculty and students of biology and biomedical sciences. The multiple examples of large-scale applications of cell and organ cultures will be useful and significant to industrial transformation and real commercialization.
Chaetomium genus was established by Gustav Kunze in 1817. According to Index Fungorum Partnership, there are 273 Chaetomium species accepted till now. Members of the genus Chaetomium are capable of colonizing various substrates and are well-known for their ability to degrade cellulose and to produce a variety of bioactive metabolites. More than 200 compounds have been reported from this genus. A huge number of new and bioactive secondary metabolites associated with unique and diverse structural types, such as chaetoglobosins, epipolythiodioxopiperazines, azaphilones, depsidones, xanthones, anthraquinones, chromones, and steroids, have been isolated and identified. Many of the compounds have been reported to possess significant biological activities, such as antitumor, antimalarial, cytotoxic, enzyme inhibitory, antimicrobial, phytotoxic, antirheumatoid and other activities. Chaetomium taxa are frequently reported to be cellulase and ligninase producers with the ability to degrade cellulosic and woody materials. This is the first, comprehensive volume covering Chaetomium genus in detail. It includes the latest research, methods, and applications, and was written by scholars working directly in the field. The book also contains informative illustrations and is fully referenced for further reading.
Nature learned long ago how useful proteins are as a diverse set of building blocks to make materials with very diverse properties. Spider webs, egg whites, hair follicles, and skeletal muscles are all largely protein. This book provides a glimpse into both nature's strategies for the design and produc tion of protein-based materials, and how scientists have been able to go beyond the constraints of natural materials to produce synthetic analogs with potentially wider ranges of properties. The work presented is very much the beginning of the story. Only recently has there been much progress in obtaining a molecular understanding of some of nature's com plex materials, and the mimicry or replacement of these by synthetic or genetically engineered variants is a field still in its infancy. Yet this book will serve as a useful introduction for those wishing to get started in what is sure to be an active and productive field throughout the 21st century. The authors represent a wide range of interests and expertise, and the topics chosen are comprehensive. Charles R. Cantor Center for Advanced Biotechnology Boston University Series Preface The properties of materials depend on the nature of the macromolecules, small molecules and inorganic components and the interfaces and interac tions between them. Polymer chemistry and physics, and inorganic phase structure and density are major factors that influence the performance of materials."
This book provides information essential to students taking courses/modules in biotechnology as part of environmental sciences, environmental management, and environmental biology programs. It is also suitable for those studying water, waste management, and pollution abatement. Topics discussed include biodiversity, renewable energy, bioremediation technology, recombinant DNA technology, genetic engineering, solid waste management, composting, vermicomposting, biofertilizer, chemical pesticides, biological control of pests, and genetically modified organisms. The book also discusses bioethics and risk assessment, intellectual property rights, environmental cleanup technologies, and environmental nanotechnology.
In Biotechnology for Fuels and Chemicals: The Thirty-First Symposium, leading researchers from academia, industry, and government offer surveys and reviews of their cutting-edge research and latest applications in the production of fuels and chemicals through biotechnology. The book's focus is on how best to improve and optimize these technologies and their economics to produce the fuels and chemicals so vital to many industrial sectors.
The Encyclopedia of Biotechnology in Agriculture and Food provides users with unprecedented access to nearly 200 entries that cover the entire food system, describing the concepts and processes that are used in the production of raw agricultural materials and food product manufacturing. So that users can locate the information they need quickly without having to flip through pages and pages of content, the encyclopedia avoids unnecessary complication by presenting information in short, accessible overviews. Addresses Environmental Issues & Sustainability in the Context of 21st Century Challenges Edited by a respected team of biotechnology experts, this unrivaled resource includes descriptions and interpretations of molecular biology research, including topics on the science associated with the cloning of animals, the genetic modification of plants, and the enhanced quality of foods. It discusses current and future applications of molecular biology, with contributions on disease resistance in animals, drought-resistant plants, and improved health of consumers via nutritionally enhanced foods. Uses Illustrations to Communicate Essential Concepts & Visually Enhance the Text This one-of-a-kind periodical examines regulation associated with biotechnology applications?with specific attention to genetically modified organisms?regulation differences in various countries, and biotechnology's impact on the evolution of new applications. The encyclopedia also looks at how biotechnology is covered in the media, as well as the biotechnology/environment interface and consumer acceptance of the products of biotechnology. Rounding out its solid coverage, the encyclopedia discusses the benefits and concerns about biotechnology in the context of risk assessment, food security, and genetic diversity. ALSO AVAILABLE ONLINE This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for both researchers, students, and librarians, including:
For more information, visit Taylor & Francis Online or contact us to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367 / (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062 / (E-mail) [email protected] Dennis R. Heldman speaks about his work on the CRC Press YouTube Channel.
Modern food biotechnology is now a billion-dollar industry, producing functional foods and nutraceuticals that offer a whole host of increased health benefits, including prevention against illness, and chronic and degenerative conditions. Written by a team of top-tier researchers and scientists from around the world, Biotechnology in Functional Foods and Nutraceuticals brings you up to speed on the cutting-edge research advances taking place in the field. The book begins with an overview of recent advances in biotechnology and their contributions to food science. It then examines the impact of genetic modification on functional foods and explores various aspects of food manufacturing technology. This one-of-a-kind resource also gives insight into quality assurance and food safety and an assessment of where the field currently stands on legal, social, and regulatory aspects of food biotechnology. The book rounds out its solid coverage with a look at future directions in the applications of biotechnology to functional foods and nutraceuticals. Biotechnology in Functional Foods and Nutraceuticals is the first book of its kind to position functional foods and nutraceuticals in the broader context of emerging technologies, making it a one-stop reference for food and nutrition scientists as well as researchers in the functional foods and nutraceuticals industries, nutritionists, dieticians, and supplement manufacturers.
Under the expert guidance of Bernd H.A. Rehm, the authors of this book provide a survey of the most striking and successful approaches for the production of biogenic nanodevices considering not only living organisms as manufacturer but also in vitro processes that utilise the self-assembly of isolated biomolecules.
Ion-exchange Technology II: Applications presents an overview of the numerous industrial applications of ion-exchange materials. In particular, this volume focuses on the use of ion-exchange materials in various fields including chemical and biochemical separations, water purification, biomedical science, toxic metal recovery and concentration, waste water treatment, catalysis, alcohol beverage, sugar and milk technologies, pharmaceuticals industry and metallurgical industries. This title is a highly valuable source not only to postgraduate
students and researchers but also to industrial R&D specialists
in chemistry, chemical, and biochemical technology as well as to
engineers and industrialists.
Geneticists and molecular biologists have been interested in quantifying genes and their products for many years and for various reasons (Bishop, 1974). Early molecular methods were based on molecular hybridization, and were devised shortly after Marmur and Doty (1961) first showed that denaturation of the double helix could be reversed - that the process of molecular reassociation was exquisitely sequence dependent. Gillespie and Spiegelman (1965) developed a way of using the method to titrate the number of copies of a probe within a target sequence in which the target sequence was fixed to a membrane support prior to hybridization with the probe - typically a RNA. Thus, this was a precursor to many of the methods still in use, and indeed under development, today. Early examples of the application of these methods included the measurement of the copy numbers in gene families such as the ribosomal genes and the immunoglo bulin family. Amplification of genes in tumors and in response to drug treatment was discovered by this method. In the same period, methods were invented for estimating gene num bers based on the kinetics of the reassociation process - the so-called Cot analysis. This method, which exploits the dependence of the rate of reassociation on the concentration of the two strands, revealed the presence of repeated sequences in the DNA of higher eukaryotes (Britten and Kohne, 1968). An adaptation to RNA, Rot analysis (Melli and Bishop, 1969), was used to measure the abundance of RNAs in a mixed population."
This book Trees IV, like the previous volumes (Trees I, II, III published in 1986, 1989, 1991, respectively), is special in its approach. It elucidates the case history and biotechnology of individual fruit, forest, and ornamental trees, and discusses the present state of the art, with particular reference to in vitro propagation. It comprises 24 chapters contributed by international experts, and deals with the importance, distribution, conventional propa gation, micropropagation, review of tissue culture studies, and recent advances in the in vitro culture and genetic manipulation of various species of Acrocomia, Ailanthus, Anacardium, Allocasuarina, Carya, Casuarina, Coffea, Cyphomandra, Feijoa, Fraxinus, Gymnocladus, Leptospermum, Fagus, Metroxylon, Oxydendrum, Paeonia, Paulownia, Pouteria, Psidium, and Quercus. Included are also five chapters on gymnosperm trees, such as Abies jraseri, Cephalotaxus harringtonia, Pinus durangensis, P. gregg ii, P. halepensis, P. pinea, and Tetraclinis articulata. Trees IV is a valuable reference book for scientists, teachers, and students of forestry, botany, genetics, and horticulture, and all those who are interested in the biotechnology of trees. New Delhi, March 1996 Professor y. P. S. BAJAJ Series Editor Contents Section I Angiosperm Trees 1. 1 Acrocomia Species (Macauba Palm) O. l. CROCOMO and M. MELO (With 8 Figures) 1 General Account . . . . . . . . . . 3 2 Chemical Composition . . . . . . 5 3 Genetics and Crop Improvement 9 4 In Vitro Culture Studies 10 5 Industrial Utilization . . . 14 6 Lauric Acid . . . . . . . . . 15 7 Summary and Conclusions 15 References . . . . . . . . . . . . . . . . . . . . . . . . . 16 1. 2 Ailanthus altissima Mill. Swingle (Tree of Heaven) M. ZENKTELER and B."
This book provides a comprehensive, state-of-the-art review of microfluidic approaches and applications in pharmatechnology. It is appropriate for students with an interdisciplinary interest in both the pharmaceutical and engineering fields, as well as process developers and scientists in the pharmaceutical industry. The authors cover new and advanced technologies for screening, production by micro reaction technology and micro bioreactors, small-scale processing of drug formulations, and drug delivery that will meet the need for fast and effective screening methods for drugs in different formulations, as well as the production of drugs in very small volumes. Readers will find detailed chapters on the materials and techniques for fabrication of microfluidic devices, microbioreactors, microsystems for emulsification, on-chip fabrication of drug delivery systems, respiratory drug delivery and delivery through microneedles, organs-on-chip, and more.
Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics. |
![]() ![]() You may like...
The Lean Six Sigma Pocket Toolbook
Michael George, John Maxey, …
Paperback
![]()
|