![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology
Antibiotics are truly miracle drugs. As a class, they are one of the only ones that actually cure disease as opposed to most drugs that only help relieve symptoms or control disease. Since bacteria that cause serious disease in humans are becoming more and more resistant to the antibiotics we have today, and because they will ultimately become resistant to any antibiotic that we use for treatment or for anything else, we need a steady supply of new antibiotics active against any resistant bacteria that arise. However, the antibiotics marketplace is no longer attractive for large pharmaceutical companies, the costs of development are skyrocketing because of ever more stringent requirements by the regulatory agencies, and finding new antibiotics active against resistant strains is getting harder and harder. These forces are all combining to deny us these miracle drugs when we need them the most. I provide a number of possible paths to shelter from this perfect storm.
This series ofbooks on the biotechnology of Medicinal and Aromatic Plants provides a survey of the literature focusing on recent information and the state of the art in tissue culture and the in vitro production of secondary metabolites. This book, Medicinal and Aromatic Plants VIII, like the previous seven volumes published in 1988, 1989, 1991, 1993, and 1994, is unique in its approach. It comprises 26 chapters dealing with the distribution, importance, conventional propagation, micropropagation, tissue culture studies and the in vitro production of important medicinal and pharmaceutical compounds in various species of Achillea, Anethum, Aquilaria, Arnica, Aspergillus, Astragalus, Catalpa, Chelidonium, Eremo phila, Eucalyptus, Eucommia, Geranium, Heterocentron, Hypericum, Maclura, Morinda, Mortierella, Nicotiana, Phaseolus, Pinellia, Piqueria, Psorales, Rhodiola, Sanguisorba, Valeriana, and Vancouveria. This book is tailored to the needs of advanced students, teachers, and research scientists in the field of pharmacy, plant tissue culture, phytochemistry, biochemical engineering, and plant biotechnology in general. New Delhi, July 1995 Professor Y. P. S. BAJAJ Series Editor Contents I Achillea millefolium L. ssp. millefolium (Yarrow): In Vitro Culture and Production of Essential Oils A. C. FIGUEIREDO, M. S. S. PAIS, and J. J. c. SCHEFFER (With 9 Figures) 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 In Vitro Culture Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Ultrastructural Study of the Glandular Trichomes and Cell Suspension Cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Composition of the Essential Oils of A. millefolium In Vivo and In Vitro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Summary and Conc1usion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II Anethum graveolens L."
Learn how AI and data science are upending the worlds of biology and medicine In Silico Dreams: How Artificial Intelligence and Biotechnology Will Create the Medicines of the Future delivers an illuminating and fresh perspective on the convergence of two powerful technologies: AI and biotech. Accomplished genomics expert, executive, and author Brian Hilbush offers readers a brilliant exploration of the most current work of pioneering tech giants and biotechnology startups who have already started disrupting healthcare. The book provides an in-depth understanding of the sources of innovation that are driving the shift in the pharmaceutical industry away from serendipitous therapeutic discovery and toward engineered medicines and curative therapies. In this fascinating book, you'll discover: An overview of the rise of data science methods and the paradigm shift in biology that led to the in silico revolution An outline of the fundamental breakthroughs in AI and deep learning and their applications across medicine A compelling argument for the notion that AI and biotechnology tools will rapidly accelerate the development of therapeutics A summary of innovative breakthroughs in biotechnology with a focus on gene editing and cell reprogramming technologies for therapeutic development A guide to the startup landscape in AI in medicine, revealing where investments are poised to shape the innovation base for the pharmaceutical industry Perfect for anyone with an interest in scientific topics and technology, In Silico Dreams also belongs on the bookshelves of decision-makers in a wide range of industries, including healthcare, technology, venture capital, and government.
At present, there is growing interest in high pressure bioscience and biotechnology. The activities are nearly equally distributed between fundamental research and applications. With original work on marine and terrestrial microbiology, biochemistry, molecular biology, deep-sea diving, food science and other industrial applications, this book covers the whole range of current high pressure bioscience. Advances in High Pressure Bioscience and Biotechnology will be welcomed by all industrial and academic researchers who are working in this field.
Biochemistry And Genetics of RecQ-Helicases provides a background into the role of helicases in general and RecQ helicases specifically in DNA repair. Helicases- enzymes which break down hydrogen bonds between nucleic acid strands in a nucleoside triphosphate-dependent manner-are ubiquitous in biology, participating in processes as diverse as replication, repair, recombination, transcription, and translation. The RecQ-family helicases are a group of helicases which have important roles in the maintenance of genomic stability in many organisms. In humans, mutations in three RecQ-family helicases lead to disease. This book thoroughly examines these helicases. Mutations in the BLM gene lead to Bloom syndrome, a disorder characterized by a susceptibility to many types of cancer. Mutations in the WRN gene cause Werner syndrome, a disease which in some respects resembles premature aging. Finally, mutations in a newly characterized RecQ-family member, RECQ4, may lead to the very rare recessive disorder Rothmund-Thomson syndrome, a condition characterized by developmental abnormalities and some aging-like manifestations. This book is intended for any researchers invested in these particular disorders, or with a general interest in DNA.
Genetic Engineering, Volume 25 contains discussions of contemporary
and relevant topics in genetics, including:
This Volume provides protocols for the biochemical analysis of hydrocarbon- and lipid-relevant products, cell components and activities of microbes that interact with hydrophobic compounds. They include methods for the extraction, purification and characterisation of surface tension-reducing bioemulsifiers and biosurfactants that increase the surface area and hence bioavailability of hydrophobic substrates. Protocols for the isolation and biochemical analysis of lipids and polyhydroxyalkanoates, food storage products made during nutrient abundance that represent important biotechnological products, are presented. The extraction of membrane lipid rafts, sub-organelles that fulfil important functional roles for the cell membrane, and the isolation and characterisation of membrane phospholipid biomarkers, are also described. The purification and characterisation of integral membrane hydrocarbon-oxidising enzymes are addressed. Lastly, two generic methods for the genetic analysis of catabolic pathways and analysis of ligand binding are presented. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Oxides for Medical Applications reviews the most important advances of oxides with optical, magnetic and electronic properties for biomedical applications. Owing to their unusual properties, oxides are expected to play a significant role in the prevention or early treatment of diseases. In addition to catalytically active artificial enzymes based on oxide materials-the book provides comprehensive coverage of the most relevant categories of oxide materials and their properties and applications. Since magnetic oxides are used extensively for a wide range of medical applications, there are numerous chapters that address these materials, including LSMO nanoparticles, ferrites, nanocatalysts, and more. Finally, practical considerations for the translation of these materials from the lab to the clinic are reviewed, including biocompatibility and toxicity of oxide nanoparticles, making this a suitable resource for researchers and practitioners in materials science and engineering in academia and the clinic.
Current information in applied microbioogy is provided in this text supported by an extensive bibliography.
Recombinant Proteins from Plants is one of the most exciting and fastest developing areas in biology. The latest molecular techniques are being applied to the exploitation of plants as novel expression systems for the p- duction and overproduction of heterologous and native proteins. Transgenic plant technology is currently used in three broad areas: the expression of - combinant proteins to improve crop quality by increasing disease/pest res- tance or increasing tolerance to stress, optimizing plant productivity and yield by the genetic manipulation of metabolic pathways, and the large-scale co- effective production of recombinant proteins for use as specialist industrial or therapeutic biomolecules. The intention of Recombinant Proteins from Plants is to provide c- prehensive and detailed protocols covering all the latest molecular approaches. Because the production oftransgenic plants has become routine in many la- ratories, coverage is also given to some of the more "classical" approaches to the separation, analysis, and characterization of recombinant proteins. The book also includes areas of research that we believe will become increasingly important in the near future: efficient transformation of monocots with Agrobacterium optimizing the stability of recombinant proteins, and a section highlighting the immunotherapeutic potential of plant-expressed proteins.
This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley's importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.
"Advanced Techniques in Soil Microbiology" presents a wide range of biotechnological methods for application in soil microbiology analysis. These include all essential methods involving molecular biology, immunology, microbiology, and structural biology, such as transcriptome analysis, RNAi technology, molecular matchmaking, RAPD, T-RFLP and FT/MS. The techniques and procedures have been selected with the aim of offering practical guides for immediate use in the laboratory. The systems investigated range from individual molecules and cells to entire eukaryotic organisms, with a focus on bacteria, fungi, mycorrhiza, and higher plants. This volume of state-of-the-art, practice oriented methods will be of great use both to the first-timer and to the experienced scientist.
Vast tonnages of solid-liquid mixtures are pumped every year in dredging operations, mining and waste-disposal applications. Most of these systems are centrifugal pumps, and the resolution of problems encountered in slurry pumping requires both detailed scientific knowledge and judgment derived from practical experience. For many years the combination of up-to-date analysis and hands-on experimentation has been provided to interested engineers in a short course based at the GIW Hydraulic Laboratory. The lecturers in this course, who represent a broad background of international expertise, have prepared this widely-recognized text, Slurry Transport Using Centrifugal Pumps, Third Edition. This unique text is logically divided into two sections: the first part of the book concentrates on the behaviors of various sorts of slurry flow, and the second part deals with the behavior of centrifugal pumps handling slurries, and with how pumps and pipelines interact as a system. Slurry Transport Using Centrifugal Pumps, Third Edition also includes:
Slurry Transport Using Centrifugal Pumps, Third Edition, will be of interest to all engineers and technologists involved in the large-scale transportation of slurries. .
Highlights the impact of Covid 19 on science, health and health care system Includes evolution, structure, and mode of infection by virus as well as strategies to attack various organs in the body. Describes emergence of various strains of virus Emphasis new techniques to detect and control the virus Discusses vaccine development to control the pandemic
The only book of its kind, Crystalline Bacterial Cell Surface
Proteins assembles present-day understanding of the occurrence,
structure, chemistry, genetics, assembly, function, and application
potential of S-layers. The chapters are designed to stand
independent of each other and provide a complete survey of the
different topics in S-layer research. This book is intended to
stimulate further development in basic and applied S-layer
research.
The objectives of this Second Edition of Biotechnology: A
Laboratory Course remain unchanged: to create a text that consists
of a series of laboratory exercises that integrate molecular
biology with protein biochemistry techniques while providing a
continuum of experiments. The course begins with basic techniques
and culminates in the utilization of previously acquired technical
experience and experimental material. Two organisms, "Sacchaomyces
cerevisiae" and "Escherichia coli," a single plasmid, and a single
enzyme are the experimental material, yet the procedures and
principles demonstrated are widely applicable to other systems.
This text will serve as an excellent aid in the establishment or
instruction of introductory courses in the biological sciences.
Applications of Biotechnology in Oncology collects key writings by Kewal K. Jain on the most important contributions of biotechnology to cancer research, particularly to the molecular diagnosis of cancer and drug delivery in cancer for personalized management of patients. Basics of various "omics" technologies and their application in oncology are described as oncogenomics and oncoproteomics. This detailed volume also explores molecular diagnostics, nanobiotechnology, cell and gene therapies, as well as personalized oncology. With approximately one thousand selected references from recent literature on this topic and numerous tables and figures, Applications of Biotechnology in Oncology serves as an ideal reference for oncologists, scientists involved in research on cancer biology, and physicians in various specialties who deal with cancer.
Cell separation, which was once limited to merely being a basic technique for fractionating different cell populations, has come a long way in the last two decades. New, advanced and more speci?c and selective techniques have emerged as the demand for isolating a speci?c cell type for various biological applications has increased. Ef?cient and cost-effective techniques for fr- tionation and isolation of target cell types are necessary to provide pure cell populations for diagnostics, biotechnological and biomedical applications. One can see a considerable need, both in biomedical research and in di- nostic medicine, for the speci?c separation of a discrete population of cells from a mixture. For example, in the ?eld of tissue engineering, isolation of stemcellsfromtissuesororgansisofparticularlygreatimportance.Moreover, understanding cell developmental pathways becomes increasingly signi?cant as diagnosis and treatment of diseases turns more to the molecular level. The diagnosis of cell-related diseases requires methods of detection, isolation and theanalysisofindividualcells,regardlessoftheirrelativecontentinthetissue. Since cell-based therapies now turn towards more realistic medical options, developing an effective separation system for large-scale cell separation has becomechallengingresearchgoalforcellbiologistsandbiotechnologists.The ideal technique should provide in a short time a good yield of cells with high puritywhile maintaining cellfunction.Despite the growingneed formethods to separate cells into cell subpopulations, the existing cell-separation te- niques stillhave somelimitations when the desired degree ofperformance on apreparativescaleisrequired.Wewillseemoreresearchfocusinthisdirection in the future. The traditional techniques of micro?ltration, ultra?ltration and ultrac- trifugation, which exploit differences in cell size, shape and density, have remainedtheworkhorsesdespitelowspeci?cityandproblemswithscalingup.
This book presents new application processes in the context of anaerobic digestion (AD), such as phosphorus recovery, microbial fuel cells (MFCs), and seaweed digestion. In addition, it introduces a new technique for the modeling and optimization of AD processes. Chapters 1 and 2 review AD as a technique for converting a range of organic wastes into biogas, while Chapter 3 discusses the recovery of phosphorus from anaerobically digested liquor. Chapters 4 and 5 focus on new techniques for modeling and optimizing AD. Chapters 6 and 7 then describe the state of the art in AD effluent treatment. The book's final three chapters focus on more recent developments, including microbial fuel cells (MFCs) (Chapter 8), seaweed production (Chapter 9), and enzyme technologies (Chapter 10).
Aspects of genetic engineering research emphasized in this volume are applications to plants (crop plants and grass, both important for human needs) and new methodologies, such as Tar cloning, which make it much easier to isolate specific regions from complex genomes. Another subject discussed is linear DNA replication of prokaryotes.
Reports research findings of the past year on 15 topics relating to genetic engineering, among them lens oncogenesis, plant ureases, genetic recombination analysis using sperm typing, and the gene expression of plant extracellular proteins. The latest in the annual series begun in 1979. Annotation c
This handbook is the only up-to-date, A to Z compilation of commercial and research zeolites. The volume presents complete patent-researched reference information on structural data, synthesis parameters, and characteristic properties. For each known zeolite there is an entry on all organics which crystallize a given structure, physical data, and applications. Data is presented in tabular or graphical form with minimal text, and a cross-referenced literature review is provided. |
![]() ![]() You may like...
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,202
Discovery Miles 32 020
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R4,120
Discovery Miles 41 200
Therapeutic Monoclonal Antibodies - From…
Harleen Kaur
Paperback
Enzymes as Sensors, Volume 589
Richard Thompson, Carol A. Fierke
Hardcover
R4,708
Discovery Miles 47 080
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R4,069
Discovery Miles 40 690
|