![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
Unique reference source that can be used from the beginning to end of a design project to aid choosing an appropriate LCD addressing technique for a given application This book will be aimed at design engineers who are likely to embed LCD drivers and controllers in many systems including systems on chip. Such designers face the challenge of making the right choice of an addressing technique that will serve them with best performance at minimal cost and complexity. Readers will be able to learn about various methods available for driving matrix LCDs and the comparisons at the end of each chapter will aid readers to make an informed design choice. The book will address the various driving techniques related to LCDs. Due to the non-linear response of the liquid crystal to external voltages, different driving methods such as passive and active matrix driving can be utilized. The associated theoretical basis of these driving techniques is introduced, and this theoretical analysis is supplemented by information on the implementation of drivers and controllers to link the theory to practice. * Written by an experienced research scientist with over 30 years in R&D in this field. * Acts as an exhaustive review and comparison of techniques developed for passive-matrix addressing of twisted nematic and super-twisted nematic (STN) LCDs. * Discusses the trend towards "High Definition" displays and that a hybrid approach to drive matrix LCDs (combination of active and passive matrix addressing) will be the future of LCD addressing. * Contains the author s recent work on Bit-Slice Addressing that is useful for fast responding LCDs, as well as a chapter on driving ferroelectric LCDs * Provides an objective comparison that will enable designers to make an informed choice of an addressing technique for a specific application. * Includes examples of the practical applications of addressing techniques. * Organised in a way that each chapter can be read independently; with the basic knowledge and historical background gained from the introductory chapters, adequate for understanding the techniques that are presented in the remaining chapters making it a self-contained reference.
This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.
The book discusses active devices and circuits for microwave communications. It begins with the basics of device physics and then explores the design of microwave communication systems including analysis and the implementation of different circuits. In addition to classic topics in microwave active devices, such as p-i-n diodes, Schottky diodes, step recovery diodes, BJT, HBT, MESFET, HFET, and various microwave circuits like switch, phase shifter, attenuator, detector, amplifier, multiplier and mixer, the book also covers modern areas such as Class-F power amplifiers, direct frequency modulators, linearizers, and equalizers. Most of the examples are based on practical devices available in commercial markets and the circuits presented are operational. The book uses analytical methods to derive values of circuit components without the need for any circuit design tools, in order to explain the theory of the circuits. All the given analytical expressions are also cross verified using commercially available microwave circuit design tools, and each chapter includes relevant diagrams and solved problems. It is intended for scholars in the field of electronics and communication engineering.
Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of asystematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.
In recent years, both Networks-on-Chip, as an architectural solution for high-speed interconnect, and power consumption, as a key design constraint, have continued to gain interest in the design and research communities. This book offers a single-source reference to some of the most important design techniques proposed in the context of low-power design for networks-on-chip architectures.
This book examines the physical principles behind the operation of high-speed transistors operating at frequencies above 10 GHz and having switching times less than 100 psec. If the 1970s cannot be remembered for the opportunities for creating and extensively using transistors operating at such high speeds, then, the situation has changed radically because of rapid progress in sub micrometer technology for manufacturing transistors and integrated circuits from GaAs and other semiconductor materials and the powerful influx of new physical concepts. Not only have transistors having switching speeds of 50-100 psec operating in the 10-20 GHz region been created in recent years, but the possibilities for manufacturing transistors operating one to two orders of magnitude faster have been revealed. As superhigh-speed transistors have been created, many of the most important areas of technology such as communications, computing technology, television, radar, and the manufacture of scientific, industrial, and medical equipment have qualitatively changed. Microwave transistors operating at millimeter wavelengths make it possible to produce compact and highly efficient equipment for communications and radar technology. Transistors with switching speeds better than 10-100 psec make it possible to increase the speed of microprocessors and other computer components to tens of billions of operations per second and thereby solve one of the most pressing problems of modern electronics - increasing the speed of digital information processing.
While making up a larger percentage of the total number of designs produced each year, ASICs present special problems for system designers in the area of testing because each design is complex and unique. This book shows readers how to apply basic test techniques to ASIC design, details the impact o
This book includes original, peer-reviewed research papers from the 2021 International Top-Level Forum on Engineering Science and Technology Development Strategy -- the 6th PURPLE MOUNTAIN FORUM on Smart Grid Protection and Control (PMF2021), held in Nanjing, China, on August 14-22, 2021. The accepted papers cover the following topics: 1. Advanced power transmission technology 2. AC/DC hybrid power grid technology3. Power Internet of Things Technology and Application4. Operation, control and protection of smart grid5. Active distribution network technology6. Power electronic technology and application7. New technology of substation automation8. Energy storage technology and application9. Application of new technologies such as artificial intelligence, blockchain, and big data10. Application of Information and Communication Technology11. Low-carbon energy planning and security12. Low-carbon operation of the power system13. Low-carbon energy comprehensive utilization technology14. Carbon trading and power market15. Carbon emission stream and carbon capture technology16. Energy saving and smart energy technology17. Analysis and evaluation of low-carbon efficiency of power system18. Carbon flow modelling in power system operationThe papers included in this proceeding share the latest research results and practical application examples on the methodologies and algorithms in these areas, which makes the book a valuable reference for researchers, engineers, and university students.
Many different kinds of FPGAs exist, with different programming technologies, different architectures and different software. Field-Programmable Gate Array Technology describes the major FPGA architectures available today, covering the three programming technologies that are in use and the major architectures built on those programming technologies. The reader is introduced to concepts relevant to the entire field of FPGAs using popular devices as examples. Field-Programmable Gate Array Technology includes discussions of FPGA integrated circuit manufacturing, circuit design and logic design. It describes the way logic and interconnect are implemented in various kinds of FPGAs. It covers particular problems with design for FPGAs and future possibilities for new architectures and software. This book compares CAD for FPGAs with CAD for traditional gate arrays. It describes algorithms for placement, routing and optimization of FPGAs. Field-Programmable Gate Array Technology describes all aspects of FPGA design and development. For this reason, it covers a significant amount of material. Each section is clearly explained to readers who are assumed to have general technical expertise in digital design and design tools. Potential developers of FPGAs will benefit primarily from the FPGA architecture and software discussion. Electronics systems designers and ASIC users will find a background to different types of FPGAs and applications of their use.
This book covers the basics of DC circuits, AC circuits, three-phase power to understand the basics and controls of electro-hydraulics and electro-pneumatics. This book covers detailed knowledge on the fluid power properties, Bernoulli's equation, Torricelli's theorem, viscosity, viscosity index, hydraulic pumps, hydraulic valves, hydraulic motors, pressure control valves, pneumatic systems, pneumatic cylinders, different types of gas laws, valve actuation, relay, magnetic contactor, different types of switches, logic gates, electro-pneumatic control circuits with different options and introduction to PLC. In addition, the detailed technique of Automation Studio software, different types of simulation circuits with hydraulics, pneumatics and electro-pneumatic are included. This book will be an excellent textbook for electromechanical, robotics, mechatronics, electrical control and mechanical students as well as for the professional who practices fluid power systems.
While the throughput of microprocessor systems tends to increase as a result of ongoing technology scaling and the advent of multi-core systems, the off-chip I/O communication bandwidth emerges as one of the potential bottlenecks that limit overall performance. In order to alleviate the communication speed constraints, optical data communication interfaces move ever closer to the processor core. It is widely expected that future generation digital systems will increasingly rely on chip-to-chip and board-to-board optical data communications for higher bandwidth and better noise immunity. This book focuses on optical communications for short and very short distance applications and discusses the monolithic integration of optical receivers with processing elements in standard CMOS technologies.
This Open Access book celebrates Professor Peter Marwedel's outstanding achievements in compilers, embedded systems, and cyber-physical systems. The contributions in the book summarize the content of invited lectures given at the workshop "Embedded Systems" held at the Technical University Dortmund in early July 2019 in honor of Professor Marwedel's seventieth birthday. Provides a comprehensive view from leading researchers with respect to the past, present, and future of the design of embedded and cyber-physical systems; Discusses challenges and (potential) solutions from theoreticians and practitioners on modeling, design, analysis, and optimization for embedded and cyber-physical systems; Includes coverage of model verification, communication, software runtime systems, operating systems and real-time computing.
Considers the life-cycle cost analysis of designing energy efficient electrical distribution systems. Addresses design requirements to integrate buildings with smart grids and micro-grids. Provides an overview of both standard and energy efficient electrical distribution components, including transformers, protection devices, conductors, controllers, and panels. Features a new chapter on optimal design energy efficient and resilient power systems. Includes case studies, exercises, and end-of-chapter problems.
Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. This book enables readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts?each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB solutions.
This book explores the technological developments at various levels of abstraction, of the new paradigm of approximate computing. The authors describe in a single-source the state-of-the-art, covering the entire spectrum of research activities in approximate computing, bridging device, circuit, architecture, and system levels. Content includes tutorials, reviews and surveys of current theoretical/experimental results, design methodologies and applications developed in approximate computing for a wide scope of readership and specialists. Serves as a single-source reference to state-of-the-art of approximate computing; Covers broad range of topics, from circuits to applications; Includes contributions by leading researchers, from academia and industry.
Cyber-physical systems are the natural extension of the so-called "Internet of Things". They are "systems of collaborating computational elements controlling physical entities". Cyber Physical Systems of Systems (CPSoS) are considered "The Next Computing Revolution" after Mainframe computing (60's-70's), Desktop computing & Internet (80's-90's) and Ubiquitous computing (00's); because all aspects of daily life are rapidly evolving towards humans interacting amongst themselves as well as their environment via computational devices (often mobile), and because in most cases systems will employ their computational capabilities to interact amongst themselves. CPSoS enable the physical world to merge with the cyber one. Using sensors, the embedded systems monitor and collect data from physical processes, such as the steering of a vehicle, energy consumption or human health functions. The systems are networked making the data globally available. CPSoS make it possible for software applications to directly interact with events in the physical world, for example to measure and react to changes in blood pressure or peaks in energy consumption. Embedded hardware and software systems crucially expand the functionality and competitiveness of vehicles, aircraft, medical equipment, production plants and household appliances. Connecting these systems to a virtual environment of globally networked services and information systems opens completely new areas of innovation and novel business platforms. Future CPSoS will have many sophisticated, interconnected parts that must instantaneously exchange, parse, and act on detailed data in a highly coordinated manner. Continued advances in science and engineering will be necessary to enable advances in design and development of these complex systems. Multi- scale, multi-layer, multi-domain, and multi-system integrated infrastructures will require new foundations in system science and engineering. Scientists and engineers with an understanding of otherwise physical systems will need to work in tandem with computer and information scientists to achieve effective, workable designs. In this tutorial, basic and advanced issues on the design of the future heterogeneous CPSoS are presented including relevant Blockchain technologies, reconfigurable systems, advanced sensor interfaces and human-centered design processes. Certain advanced tools for the design and implementation of the cyber parts of the CPSoS (i.e. FPGA design tools from Xilinx) are also covered.
This book provides insights into the 3rd International Conference on Communication, Devices and Computing (ICCDC 2021), which was held in Haldia, India, on August 16-18, 2021. It covers new ideas, applications, and the experiences of research engineers, scientists, industrialists, scholars, and students from around the globe. The proceedings highlight cutting-edge research on communication, electronic devices, and computing and address diverse areas such as 5G communication, spread spectrum systems, wireless sensor networks, and signal processing for secure communication, error control coding, printed antennas, analysis of wireless networks, antenna array systems, analog and digital signal processing for communication systems, frequency selective surfaces, radar communication, and substrate integrated waveguide and microwave passive components, which are key to state-of-the-art innovations in communication technologies.
This pioneering text explains how to synthesize digital diagnostic sequences for wire interconnects using boundary-scan, and how to assess the quality of those sequences. It takes a new approach, carefully modelling circuit and interconnect faults, and applying graph techniques to solve problems.
This book guides readers through the entire complex of interrelated theoretical and practical aspects of the end-to-end design and organization of production of silicon submicron integrated circuits. The discussion includes the theoretical foundations of the operation of field-effect- and bipolar transistors, the methods and peculiarities of the structural and schematic design, basic circuit-design and system-design engineering solutions for bipolar, CMOS, BiCMOS and TTL integrated circuits, standard design libraries, and typical design flows.
This book discusses the latest developments and outlines future trends in the fields of microelectronics, electromagnetics and telecommunication. It contains original research works presented at the International Conference on Microelectronics, Electromagnetics and Telecommunication (ICMEET 2021), held in Bhubaneswar, Odisha, India during 27 - 28 August 2021. The papers were written by scientists, research scholars and practitioners from leading universities, engineering colleges and R&D institutes from all over the world and share the latest breakthroughs in and promising solutions to the most important issues facing today's society.
Analog-to-Digital Converters (ADCs) play an important role in most modern signal processing and wireless communication systems where extensive signal manipulation is necessary to be performed by complicated digital signal processing (DSP) circuitry. This trend also creates the possibility of fabricating all functional blocks of a system in a single chip (System On Chip - SoC), with great reductions in cost, chip area and power consumption. However, this tendency places an increasing challenge, in terms of speed, resolution, power consumption, and noise performance, in the design of the front-end ADC which is usually the bottleneck of the whole system, especially under the unavoidable low supply-voltage imposed by technology scaling, as well as the requirement of battery operated portable devices. Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters will present new techniques tailored for low-voltage and high-speed Switched-Capacitor (SC) ADC with various design-specific considerations.
This book discusses the design principles of physically unclonable functions (PUFs) and how these can be employed in hardware-based security applications, in particular, the book provides readers with a comprehensive overview of security threats and existing countermeasures. This book has many features that make it a unique source for students, engineers and educators, including more than 80 problems and worked exercises, in addition to, approximately 200 references, which give extensive direction for further reading.
The dielectric properties of silicon dioxide (SiO2), such as high resistivity and excellent dielectric strength, have aided the evolution of microelectronics during the past 40 years. Silica films have been successfully used over this period for both gate and interconnect applications in ultra large-scale integration (ULSI) devices. Dielectric films for gate applications need to have a higher dielectric constant, while interconnect dielectric materials need to have a lower dielectric constant, compared with SiO2. In order to maintain the high drive current and gate capacitance required of scaled MOSFETs (metal-oxide-silicon field effect transistors), SiO2 gate dielectrics have decreased in thickness to less than 2 nm today, with a continued effort to shrink to the thickness below 1 nm. However, SiO2 layers thinner than 1.2 nm do not have the insulating properties required of a gate dielectric and ultrathin SiO2 gate dielectrics give rise to a number of problems, such as high gate leakage current and reliability degradation. Therefore, alternative gate dielectric materials are required. SiO2, having been the universal dielectric material for both gate and interlayer dielectric (ILD) applications for many years, must be replaced by materials with a higher dielectric constant for the gate applications and a reduced dielectric constant for interconnect applications. Replacements for silicon dioxide, such as HfO2, ZrO2, and Al2O3, for introduction as high-k dielectrics (described in the central section of the book), have material properties that are quite different compared with those of traditional dense SiO2 and these differences create many technological challenges that are thesubject of intensive research. In addition, not only the development of new gate materials but also re-engineering of many technological processes is needed. For example, in the case of low-k materials (discussed in the first section of the book), active species formed during different technological processes diffuse into the pores and create severe damage. All these problems have been stimulating the development of new technological approaches, which will be dealt with in this book. This book presents an in-depth overview of novel developments made by scientific leaders in the microelectronics community. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and application of novel dielectric films. This book is intended for postgraduate level students, PhD students and industrial researchers, to enable them to gain insight into this important area of research. |
![]() ![]() You may like...
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
Nano-CMOS and Post-CMOS Electronics…
Saraju P. Mohanty, Ashok Srivastava
Hardcover
Nano-CMOS and Post-CMOS Electronics…
Saraju P. Mohanty, Ashok Srivastava
Hardcover
Design of Terahertz CMOS Integrated…
Minoru Fujishima, Shuhei Amakawa
Hardcover
|