![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
Base stations developed according to the 3GPP Long Term Evolution (LTE) standard require unprecedented processing power. 3GPP LTE enables data rates beyond hundreds of Mbits/s by using advanced technologies, necessitating a highly complex LTE physical layer. The operating power of base stations is a significant cost for operators, and is currently optimized using state-of-the-art hardware solutions, such as heterogeneous distributed systems. The traditional system design method of porting algorithms to heterogeneous distributed systems based on test-and-refine methods is a manual, thus time-expensive, task. "Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach" provides a clear introduction to the 3GPP LTE physical layer and to dataflow-based prototyping and programming. The difficulties in the process of 3GPP LTE physical layer porting are outlined, with particular focus on automatic partitioning and scheduling, load balancing and computation latency reduction, specifically in systems based on heterogeneous multi-core Digital Signal Processors. Multi-core prototyping methods based on algorithm dataflow modeling and architecture system-level modeling are assessed with the goal of automating and optimizing algorithm porting. With its analysis of physical layer processing and proposals of parallel programming methods, which include automatic partitioning and scheduling, "Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach" is a key resource for researchers and students. This study of LTE algorithms which require dynamic or static assignment and dynamic or static scheduling, allows readers to reassess and expand their knowledge of this vital component of LTE base station design. "
This book provides a comprehensive introduction to embedded flash memory, describing the history, current status, and future projections for technology, circuits, and systems applications. The authors describe current main-stream embedded flash technologies from floating-gate 1Tr, floating-gate with split-gate (1.5Tr), and 1Tr/1.5Tr SONOS flash technologies and their successful creation of various applications. Comparisons of these embedded flash technologies and future projections are also provided. The authors demonstrate a variety of embedded applications for auto-motive, smart-IC cards, and low-power, representing the leading-edge technology developments for eFlash. The discussion also includes insights into future prospects of application-driven non-volatile memory technology in the era of smart advanced automotive system, such as ADAS (Advanced Driver Assistance System) and IoE (Internet of Everything). Trials on technology convergence and future prospects of embedded non-volatile memory in the new memory hierarchy are also described. Introduces the history of embedded flash memory technology for micro-controller products and how embedded flash innovations developed; Includes comprehensive and detailed descriptions of current main-stream embedded flash memory technologies, sub-system designs and applications; Explains why embedded flash memory requirements are different from those of stand-alone flash memory and how to achieve specific goals with technology development and circuit designs; Describes a mature and stable floating-gate 1Tr cell technology imported from stand-alone flash memory products - that then introduces embedded-specific split-gate memory cell technologies based on floating-gate storage structure and charge-trapping SONOS technology and their eFlash sub-system designs; Describes automotive and smart-IC card applications requirements and achievements in advanced eFlash beyond 4 0nm node.
During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry. The Art of Wireless Sensor Networks: Volume 1- Fundamentals focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks.All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and operating systems. This book will be an excellent source of information for both senior undergraduate and graduate students majoring in computer science, computer engineering, electrical engineering, or any related discipline. In addition, computer scientists, researchers, and practitioners in both academia and industry will find this book useful and interesting.
Although asynchronous circuits date back to the early 1950s most of
the digital circuits in use today are synchronous because,
traditionally, asynchronous circuits have been viewed as difficult
to understand and design. In recent years, however, there has been
a great surge of interest in asynchronous circuits, largely through
the development of new asynchronous design methodologies.
In the 11th edition in this successful series, the topics are structured-mixed-mode design, multi-bit sigma-delta converters and short range RF circuits. The book provides valuable information and excellent overviews of analogue circuit design, CAD and RF systems.
This book describes techniques for time-interleaving a number of analog-to-digital data converters to achieve demanding bandwidth requirements. Readers will benefit from the presentation of a low-power solution that can be used in actual products, while alleviating the time-varying signal artifacts that typically arise when implementing such a system architecture.
This is the first book focusing on the subject of image rejection in wireless receiver design, which is crucial for the current and next generation mobile terminals. It serves as a very useful reference for wireless design engineers, researchers and students.
This book provides a comprehensive and up-to-date guide to the AMOLED technologies and applications which have become industry standard in a range of devices, from small mobile displays to large televisions. Unlike other books on the topic, which cover the fundamentals, materials, processing, and manufacturing of OLEDs, this one-stop book discusses the core components, such as TFT backplanes, OLED materials and devices, and driving schematics together in one volume with chapters written by experts from leading international companies in the field of OLED materials and OLED TVs. It also examines emerging areas, such as micro-LEDs, displays using quantum dots, and AR & VR displays. Presenting the latest research trends as well as the basic principles of each topic, this book is intended for undergraduate and postgraduate students taking display-related courses, new researchers, and engineers in related fields.
This book is written for engineers who need to develop algorithms used for signal processing and/or implement algorithms using the C programming language or MATLAB. The book features a rich collection of recipes for applied signal processing such as FIR, IIR, FFT, correlation, complex FIR, adaptive filters and others. The book applies to those who want to implement in the shortest time to market working systems that are built from a collection of building blocks implemented in an FPGA firmware or C language software, running on an SBC or DSP. Structured as an instantly applicable guide, the author covers a wide collection of required solutions to common encountered problems with a software guide. All Codes in the book are verified and processing times for all C codes are specified, enabling the reader to estimate processing time on his own target, by comparing it to the I5 2.9 GHz CPU used here. Endorsements: "Your book bridges a gap between theory and implementation on hardware - which is a topic relevant to many in industry and many students who are targeting the digital signal processing industry (including communications and robotics)" Professor Alfred Hero, University of Michigan, Ann Arbor, USA "I believe you that for many engineers the book will be practical" Professor Anthony J. Weiss, Tel Aviv University, Israel
This book is a collection of high-quality research articles. The book includes topics specific to the emerging areas of control for robotic systems, wireless communication, and development of embedded systems for robotic applications. The book integrates three important aspects of automation, namely (i) communication, (ii) control, and (iii) embedded design for robotic applications. This book is unique as it provides a unified framework for analysis, design, and deployment of the robotic applications across various engineering and non-engineering disciplines including the three primary aspects mentioned above. Furthermore, the emerging research and development work pertaining to the deployment of intelligent, nonlinear, and embedded control for robotic system for non-standard operating environment due to the widespread application of robotics technology for societal benefit is also a focal point of the book.
This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption and improve soft error reliability at the same time.
This book is dedicated to new mathematical instruments assigned for logical modeling of the memory of digital devices. The case in point is logic-dynamical operation named venjunction and venjunctive function as well as sequention and sequentional function. Venjunction and sequention operate within the framework of sequential logic. In a form of the corresponding equations, they organically fit analytical expressions of Boolean algebra. Thus, a sort of symbiosis is formed using elements of asynchronous sequential logic on the one hand and combinational logic on the other hand. So, asynchronous logic is represented in the form of enhanced Boolean logic. The book contains initial concepts, fundamental definitions, statements, principles and rules needed for theoretical justification of the mathematical apparatus and its validity for asynchronous logic. Asynchronous operators named venjunctor and sequentor are designed for practical implementation. These basic elements are assigned for realizing of memory functions in sequential circuits. Present research work is the final stage of generalization and systematization of all those ideas and investigations, author's interest to which alternately flashed up and faded over many years and for various reasons until formed "critical mass," and all findings were arranged definitively as a mathematical basis of a theory appropriately associated under a common theme - asynchronous sequential logic, essentially classified as switching logic, which falls into category of algebraic logics.
Matching Properties of Deep Sub-Micron MOS Transistors examines this interesting phenomenon. Microscopic fluctuations cause stochastic parameter fluctuations that affect the accuracy of the MOSFET. For analog circuits this determines the trade-off between speed, power, accuracy and yield. Furthermore, due to the down-scaling of device dimensions, transistor mismatch has an increasing impact on digital circuits. The matching properties of MOSFETs are studied at several levels of abstraction: A simple and physics-based model is presented that accurately describes the mismatch in the drain current. The model is illustrated by dimensioning the unit current cell of a current-steering D/A converter. The most commonly used methods to extract the matching properties of a technology are bench-marked with respect to model accuracy, measurement accuracy and speed, and physical contents of the extracted parameters. The physical origins of microscopic fluctuations and how they affect MOSFET operation are investigated. This leads to a refinement of the generally applied 1/area law. In addition, the analysis of simple transistor models highlights the physical mechanisms that dominate the fluctuations in the drain current and transconductance. The impact of process parameters on the matching properties is discussed. The impact of gate line-edge roughness is investigated, which is considered to be one of the roadblocks to the further down-scaling of the MOS transistor. Matching Properties of Deep Sub-Micron MOS Transistors is aimed at device physicists, characterization engineers, technology designers, circuit designers, or anybody else interested in the stochastic properties of the MOSFET.
Quality Electronic Design (QED)'s landscape spans a vast region where territories of many participating disciplines and technologies overlap. This book explores the latest trends in several key topics related to quality electronic design, with emphasis on Hardware Security, Cybersecurity, Machine Learning, and application of Artificial Intelligence (AI). The book includes topics in nonvolatile memories (NVM), Internet of Things (IoT), FPGA, and Neural Networks.
The editors have drawn together an exceptional group of internationally known Japanese authorities to prepare the most comprehensive and detailed source of information available on this exciting area of optoelectronics. The book covers the entire area of optoelectronics, going from the theoretical background to advanced devices, materials processing details and specific applications from the standpoints of device physics and engineering.
Inductive powering has been a reliable and simple method for many years to wirelessly power devices over relatively short distances, from a few centimetres to a few feet. Examples are found in biomedical applications, such as cochlear implants; in RFID, such as smart cards for building access control; and in consumer devices, such as electrical toothbrushes. Device sizes shrunk considerably the past decades, demanding accurate design tools to obtain reliable link operation in demanding environments. With smaller coil sizes, the link efficiency drops dramatically to a point where the commonly used calculation methods become invalid. Inductive Powering: Basic Theory and Application to Biomedical Systems lists all design equations and topology alternatives to successfully build an inductive power and data link for your specific application. It also contains practical guidelines to expand the external driver with a servomechanism that automatically tunes itself to varying coupling and load conditions.
The new edition of this textbook is based on Dr. Thanh T. Tran's 10+ years' experience teaching high-speed digital and analog design courses at Rice University and 30+ years' experience working in high-speed system design, including signal and power integrity in digital signal processing (DSP), computer, and embedded system. The book provides hands-on, practical instruction on high-speed digital and analog design for students and working engineers. The author first presents good high-speed digital and analog design practices that minimize both component and system noise and ensure system design success. He then presents guidelines to be used throughout the design process to reduce noise and radiation and to avoid common pitfalls while improving quality and reliability. The book is filled with tips on design and system simulation that minimize late stage redesign costs and product shipment delays. Hands-on design examples focusing on audio, video, analog filters, DDR memory, and power supplies are featured throughout. In addition, the author provides a practical approach to design multi-gigahertz high-speed serial busses (USB-C, PCIe, HDMI, DP) and simulate printed circuit board insertion and return loss using s-parameter models.
This textbook provides a compact but comprehensive treatment that guides students through the analysis of circuits, using LTspice (R). Ideal as a hands-on source for courses in Circuits, Electronics, Digital Logic and Power Electronics this text focuses on solving problems using market-standard software, corresponding to all key concepts covered in the classroom. The author uses his extensive classroom experience to guide students toward deeper understanding of key concepts, while they gain facility with software they will need to master for later studies and practical use in their engineering careers.
This book is about the logic of Boolean equations. Such equations were central in the "algebra of logic" created in 1847 by Boole [12, 13] and devel oped by others, notably Schroder [178], in the remainder of the nineteenth century. Boolean equations are also the language by which digital circuits are described today. Logicians in the twentieth century have abandoned Boole's equation based logic in favor of the more powerful predicate calculus. As a result, digital engineers-and others who use Boole's language routinely-remain largely unaware of its utility as a medium for reasoning. The aim of this book, accordingly, is to is to present a systematic outline of the logic of Boolean equations, in the hope that Boole's methods may prove useful in solving present-day problems. Two Logical Languages Logic seeks to reduce reasoning to calculation. Two main languages have been developed to achieve that object: Boole's "algebra of logic" and the predicate calculus. Boole's approach was to represent classes (e. g. , happy creatures, things productive of pleasure) by symbols and to represent logical statements as equations to be solved. His formulation proved inadequate, however, to represent ordinary discourse. A number of nineteenth-century logicians, including Jevons [94], Poretsky [159], Schroder [178], Venn [210], and Whitehead [212, 213], sought an improved formulation based on ex tensions or modifications of Boole's algebra. These efforts met with only limited success.
This book includes original, peer-reviewed research papers from the 2022 10th China Conference on Command and Control (C2 2022), held in Beijing, China on July 7-9, 2022. The topics covered include but are not limited to: Theories, Modelling and Simulation, System Engineering Technology for Intelligent Command and Control, 5G and Intelligent Command, Control and Management Integration Technology, Joint Cooperative Command and Control Organization Management, Agility in the Network Age, Cyberspace Situational Awareness Technology, CPS Parallel Management and Control Unmanned Systems, Intelligent Military Camp Technology, Architecture Design for Intelligent Air Traffic Control System, Human-Machine Interaction and Virtual Reality, Swarm Intelligence and Cooperative Control, Intelligent Gaming Theory and Technology.The papers showcased here share the latest findings on theories, algorithms and applications in command and control, making the book a valuable asset for researchers, engineers, and university students alike.
This book investigates in detail the antenna optimization method with binary coding and their applications to antenna design. It introduces the binary coding principle and optimization method, the method of binary coding corresponding to geometry structure. In further, the designs by binary coding optimization method of following items are introduced, including multi-frequency antenna based on binary coding, low profile RFID tag antenna on metal, wideband directional antenna with low profile, mmWave antenna and UWB antenna. Additionally, improved hexagon unit to antenna optimization by binary coding method is given, and a new method of antenna design based on optimization of linear motion trajectory is presented in the end.This book proposes an automatic optimization method of meshed antenna based on binary coding, reduce the artificial a priori influence and find the best antenna. The book is intended for undergraduate and graduate students who are interested in antenna technology, researchers investigating high performance antenna, and antenna design engineers working on new antenna and the applications.
Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-um CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding. "
The book is composed of two parts. The first part introduces the concepts of the design of digital systems using contemporary field-programmable gate arrays (FPGAs). Various design techniques are discussed and illustrated by examples. The operation and effectiveness of these techniques is demonstrated through experiments that use relatively cheap prototyping boards that are widely available. The book begins with easily understandable introductory sections, continues with commonly used digital circuits, and then gradually extends to more advanced topics. The advanced topics include novel techniques where parallelism is applied extensively. These techniques involve not only core reconfigurable logical elements, but also use embedded blocks such as memories and digital signal processing slices and interactions with general-purpose and application-specific computing systems. Fully synthesizable specifications are provided in a hardware-description language (VHDL) and are ready to be tested and incorporated in engineering designs. A number of practical applications are discussed from areas such as data processing and vector-based computations (e.g. Hamming weight counters/comparators). The second part of the book covers the more theoretical aspects of finite state machine synthesis with the main objective of reducing basic FPGA resources, minimizing delays and achieving greater optimization of circuits and systems.
Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of asystematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers. |
![]() ![]() You may like...
Recent Advances in Optimization and its…
Moritz Diehl, Francois Glineur, …
Hardcover
R8,385
Discovery Miles 83 850
Self-Learning Optimal Control of…
Qinglai Wei, Ruizhuo Song, …
Hardcover
R4,139
Discovery Miles 41 390
Adaptive Dynamic Programming: Single and…
Ruizhuo Song, Qinglai Wei, …
Hardcover
R2,902
Discovery Miles 29 020
Harnessing Performance Variability in…
William Fornaciari, Dimitrios Soudris
Hardcover
R2,916
Discovery Miles 29 160
|