![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
The basic concepts and building blocks for the design of Fine- (or FPGA) and Coarse-Grain Reconfigurable Architectures are discussed in this book. Recently-developed integrated architecture design and software-supported design flow of FPGA and coarse-grain reconfigurable architecture are also described. The book is accompanied by an interactive CD which includes case studies and lab projects for the design of FPGA and Coarse-grain architectures.
This book discusses the digital design of integrated circuits under process variations, with a focus on design-time solutions. The authors describe a step-by-step methodology, going from logic gates to logic paths to the circuit level. Topics are presented in comprehensively, without overwhelming use of analytical formulations. Emphasis is placed on providing digital designers with understanding of the sources of process variations, their impact on circuit performance and tools for improving their designs to comply with product specifications. Various circuit-level "design hints" are highlighted, so that readers can use then to improve their designs. A special treatment is devoted to unique design issues and the impact of process variations on the performance of FinFET based circuits. This book enables readers to make optimal decisions at design time, toward more efficient circuits, with better yield and higher reliability.
Sunlight readable transflective liquid crystal displays, used on devices from cell phones and portable media players, to GPS and even some desktop monitors, have become indispensable in our day-to-day lives. "Transflective Liquid Crystal Displays" is a methodical examination of this display technology, providing a useful reference to the fundamentals of the topic. Including thorough descriptions of the essential physics of transflective LCD technologies, the book also compares transflective LCD technology with alternatives, such as OLED displays, to enable display engineers to appropriately select the correct device for their particular application.Includes detailed descriptions of both pure transmissive and reflective LCDs, and the design considerations and performance of combining these into small mobile displays. Focuses on fundamental elements, such as double cell gap transflective LCDs, wide-viewing angle technology, light polarization and wide-view linear and circular polarizers, video rate display by colour sequential technologies, colour sciences and engineering, and backlights. Describes the latest LCD technologies, such as polymer-sustained surface alignment technology, and the possible trends which could be applied to transflective LCDs in the future. Its focus on the fundamentals of transflective liquid crystal displays makes this an ideal graduate text, while display engineers, scientists, developers and technicians working with this technology will also welcome this resource. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics
This book describes a new design methodology that allows optimization-based synthesis of RF systems in a hierarchical multilevel approach, in which the system is designed in a bottom-up fashion, from the device level up to the (sub)system level. At each level of the design hierarchy, the authors discuss methods that increase the design robustness and increase the accuracy and efficiency of the simulations. The methodology described enables circuit sizing and layout in a complete and automated integrated manner, achieving optimized designs in significantly less time than with traditional approaches.
Logic Synthesis and Optimization presents up-to-date research information in a pedagogical form. The authors are recognized as the leading experts on the subject. The focus of the book is on logic minimization and includes such topics as two-level minimization, multi-level minimization, application of binary decision diagrams, delay optimization, asynchronous circuits, spectral method for logic design, field programmable gate array (FPGA) design, EXOR logic synthesis and technology mapping. Examples and illustrations are included so that each contribution can be read independently. Logic Synthesis and Optimization is an indispensable reference for academic researchers as well as professional CAD engineers.
This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hulsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred images, most of which are original and have been accessed by detailed searches in the archives.
NONLINEAR FILTERS Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms. Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy: Organization that allows the book to act as a stand-alone, self-contained reference A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values A concise tutorial on deep learning and reinforcement learning A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation Guidelines for constructing nonparametric Bayesian models from parametric ones Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.
Polycrystalline SiGe has emerged as a promising MEMS (Microelectromechanical Systems) structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the direct post-processing on top of CMOS. This CMOS-MEMS monolithic integration can lead to more compact MEMS with improved performance. The potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration has already been demonstrated. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper (Cu) metallization, due to its lower resistivity and improved reliability. Poly-SiGe for MEMS-above-CMOS sensors demonstrates the compatibility of poly-SiGe with post-processing above the advanced CMOS technology nodes through the successful fabrication of an integrated poly-SiGe piezoresistive pressure sensor, directly fabricated above 0.13 m Cu-backend CMOS. Furthermore, this book presents the first detailed investigation on the influence of deposition conditions, germanium content and doping concentration on the electrical and piezoresistive properties of boron-doped poly-SiGe. The development of a CMOS-compatible process flow, with special attention to the sealing method, is also described. Piezoresistive pressure sensors with different areas and piezoresistor designs were fabricated and tested. Together with the piezoresistive pressure sensors, also functional capacitive pressure sensors were successfully fabricated on the same wafer, proving the versatility of poly-SiGe for MEMS sensor applications. Finally, a detailed analysis of the MEMS processing impact on the underlying CMOS circuit is also presented.
This book provides readers with insight into an alternative approach for enhancing the reliability, security, and low power features of integrated circuit designs, related to transient faults, hardware Trojans, and power consumption. The authors explain how the addition of integrated sensors enables the detection of ionizing particles and how this information can be processed at a high layer. The discussion also includes a variety of applications, such as the detection of hardware Trojans and fault attacks, and how sensors can operate to provide different body bias levels and reduce power costs. Readers can benefit from these sensors-based approaches through designs with fast response time, non-intrusive integration on gate-level and reasonable design costs.
This fully updated textbook provides complete coverage of electrical circuits and introduces students to the field of energy conversion technologies, analysis and design. Chapters are designed to equip students with necessary background material in such topics as devices, switching circuit analysis techniques, converter types, and methods of conversion. The book contains a large number of examples, exercises, and problems to help enforce the material presented in each chapter. A detailed discussion of resonant and softswitching dc-to-dc converters is included along with the addition of new chapters covering digital control, non-linear control, and micro-inverters for power electronics applications. Designed for senior undergraduate and graduate electrical engineering students, this book provides students with the ability to analyze and design power electronic circuits used in various industrial applications.
For upper-level courses in Devices and Circuits at 2-year or 4-year Engineering and Technology institutes. Electronic Devices and Circuit Theory, Eleventh Edition, offers students a complete, comprehensive survey, focusing on all the essentials they will need to succeed on the job. Setting the standard for nearly 30 years, this highly accurate text is supported by strong pedagogy and content that is ideal for new students of this rapidly changing field. The colorful layout with ample photographs and examples enhances students' understanding of important topics. This text is an excellent reference work for anyone involved with electronic devices and other circuitry applications, such as electrical and technical engineers.
This book describes simple to complex ASIC design practical scenarios using Verilog. It builds a story from the basic fundamentals of ASIC designs to advanced RTL design concepts using Verilog. Looking at current trends of miniaturization, the contents provide practical information on the issues in ASIC design and synthesis using Synopsys DC and their solution. The book explains how to write efficient RTL using Verilog and how to improve design performance. It also covers architecture design strategies, multiple clock domain designs, low-power design techniques, DFT, pre-layout STA and the overall ASIC design flow with case studies. The contents of this book will be useful to practicing hardware engineers, students, and hobbyists looking to learn about ASIC design and synthesis.
This book describes for readers the protection of electronic hardware in space vehicles from the negative effects of space dust and electromagnetic irradiation. The authors explain the mechanisms of "space dust" (high velocity particles in space), the effects on the on-board electronic hardware of space vehicles, and development of protection methods from these influences on humans, equipment and microcircuits. Coverage includes hard-to-find technical information on the design of special boosters for accelerating microparticles to space velocities, techniques for conducting experiments on Earth, data processing, and practical examples. The authors also discuss fabrication technologies and composition of special, radio absorbent materials for protecting space vehicles from the electromagnetic irradiation.
This book gathers outstanding research papers presented in the 2nd International Conference on Artificial Intelligence: Advances and Application (ICAIAA 2021), held in Poornima College of Engineering, Jaipur, India during 27-28 March 2021. This book covers research works carried out by various students such as bachelor, master and doctoral scholars, faculty and industry persons in the area of artificial intelligence, machine learning, deep learning applications in healthcare, agriculture, business, security, etc. It will also cover research in core concepts of computer networks, intelligent system design and deployment, real time systems, WSN, sensors and sensor nodes, SDN, NFV, etc.
This book provides a comprehensive overview of signal filtering, including an introduction, definitions of the terms and algorithms for numerical calculation of the properties of the transfer function in frequency and time domains. All the chapters discuss the theoretical background and explain the underlying algorithms including the iterative numerical procedures necessary to obtain the solutions. It starts by considering polynomial filters, offering a broad range of solutions and introducing critical monotonic passband amplitude characteristics (CMAC). It also describes modifications to the classical Chebyshev and elliptic filters to overcome their limitations. In the context linear phase low-pass prototypes, it presents filters approximating constant group delay in the equi-ripple manner for the first time. Further, it discusses new procedures to improve the selectivity of all polynomial filters by introducing transmission zeros, such as filters with multiple transmission zeros on the omega axis, as well as phase correction of selective filters for both low-pass and band-pass filters. Other topics explored include linear phase all-pass (exhibiting low-pass group delay approximation) filters; all-pass filters (exhibiting band-pass group delay approximation) with linear and parabolic phase synthesized directly as band-pass; high-pass, and band-stop amplitude characteristic frequency transformations to produce band-pass; and direct synthesis of linear and parabolic phase selective band-pass filters synthesized directly as band-pass. Lastly, for system (physical) synthesis, the book describes the algorithms and procedures for the following: cascade passive LC; active cascade RC; active parallel RC (for the first time); active parallel SC; Gm-C based on LC prototypes; and parallel IIR based on bilinear transformation of analog prototypes. Every algorithm, be it in transfer function synthesis or in system synthesis, is accompanied by a proper nontrivial comprehensive example produced by the RM software.
This book allows students to learn fundamental concepts in linear circuit analysis using a well-developed methodology that has been carefully refined through classroom use. Applying his many years of teaching experience, the author focuses the reader's attention on basic circuit concepts and modern analysis methods. The text includes detailed coverage of basics of different terminologies used in electric circuits, mesh and node equations, network analysis and network theorems, signals and its properties, graph theory and its application in circuit analysis, analogous systems, Fourier and Laplace transforms and their applications in circuit theory.Wide coverage of evolution integral, two-port networks, passive and active filters, state variable formulation of network problems and network synthesis have been made. Transient response and frequency domain analysis of network systems has also been discussed. The hall-mark feature of this text is that it helps the reader to gain a sound understanding on the basics of circuit theory.
Symbolic analysis is an intriguing topic in VLSI designs. The analysis methods are crucial for the applications to the parasitic reduction and analog circuit evaluation. However, analyzing circuits symbolically remains a challenging research issue. Therefore, in this book, we survey the recent results as the progress of on-going works rather than as the solution of the field. For parasitic reduction, we approximate a huge amount of electrical parameters into a simplified RLC network. This reduction allows us to handle very large integrated circuits with given memory capacity and CPU time. A symbolic analysis approach reduces the circuit according to the network topology. Thus, the designer can maintain the meaning of the original network and perform the analysis hierarchically. For analog circuit designs, symbolic analysis provides the relation between the tunable parameters and the characteristics of the circuit. The analysis allows us to optimize the circuit behavior. The book is divided into three parts. Part I touches on the basics of circuit analysis in time domain and in s domain. For an s domain expression, the Taylor's expansion with s approaching infinity is equivalent to the time domain solution after the inverse Laplace transform. On the other hand, the Taylor's expansion when s approaches zero derives the moments of the output responses in time domain. Part II focuses on the techniques for parasitic reduction. In Chapter 2, we present the approximation methods to match the first few moments with reduced circuit orders. In Chapter 3, we apply the Y-Delta transformation to reduce the dynamic linear network. The method finds the exact values of the low order coefficients of the numerator and denominator of the transfer function and thus matches part of the moments. In Chapter 4, we handle two major issues of the Y-Delta transformation: common factors in fractional expressions and round-off errors. Chapter 5 explains the stability of the reduced expression, in particular the Ruth-Hurwitz Criterion. We make an effort to describe the proof of the Criterion because the details are omitted in most of the contemporary textbooks. In Chapter 6, we present techniques to synthesize circuits to approximate the reduced expressions after the transformation. In Part III, we discuss symbolic generation of the determinants and cofactors for the application to analog designs. In Chapter 7, we depict the classical topological analysis approach. In Chapter 8, we describe a determinant decision diagram approach that exploits the sparsity of the matrix to accelerate the computation. In Chapter 9, we take only significant terms when we search through determinant decision diagram to approximate the solution. In Chapter 10, we extend the determinant decision diagram to a hierarchical model. The construction of the modules through the hierarchy is similar to the Y-Delta transformation in the sense that a byproduct of common factors appears in the numerator and denominator. Therefore, we describe the method to prune the common factors.
This book is a collection of papers from international experts presented at International Conference on NextGen Electronic Technologies (ICNETS2-2016). ICNETS2 encompassed six symposia covering all aspects of electronics and communications domains, including relevant nano/micro materials and devices. Presenting recent research on wireless communication networks and Internet of Things, the book will prove useful to researchers, professionals and students working in the core areas of electronics and their applications, especially in signal processing, embedded systems and networking.
This book details the simulation and optimization of integer and fractional-order chaotic systems, and how they can be implemented in the analog and digital domains using FPAAs and FPGAs. Design guidelines are provided to use commercially available electronic devices, and to perform hardware descriptions of integer/fractional-order chaotic systems programming in VHDL. Finally, several engineering applications oriented to cryptography, internet of things, robotics and chaotic communications, are detailed to highlight the usefulness of FPAA/FPGA based integer/fractional-order chaotic systems. Provides guidelines to implement fractional-order derivatives using commercially available devices; Describes details on using FPAAs to approach fractional-order chaotic systems; Includes details on using FPGAs to approach fractional-order chaotic systems, programming in VHDL and reducing hardware resources; Discusses applications to cryptography, internet of things, robotics and chaotic communications.
This book proposes a synergistic framework to help IP vendors to protect hardware IP privacy and integrity from design, optimization, and evaluation perspectives. The proposed framework consists of five interacting components that directly target at the primary IP violations. All the five algorithms are developed based on rigorous mathematical modeling for primary IP violations and focus on different stages of IC design, which can be combined to provide a formal security guarantee.
This book gathers the proceedings of the Third International Conference on Computational Advancement in Communication Circuits and Systems (ICCACCS 2020), organized virtually by Narula Institute of Technology, Kolkata, India. The book presents peer-reviewed papers that highlight new theoretical and experimental findings in the fields of electronics and communication engineering, including interdisciplinary areas like advanced computing, pattern recognition and analysis, and signal and image processing. The respective papers cover a broad range of principles, techniques, and applications in microwave devices, communication and networking, signal and image processing, computations and mathematics, and control.
This book is structured as a step-by-step course of study along the lines of a VLSI integrated circuit design project. The entire Verilog language is presented, from the basics to everything necessary for synthesis of an entire 70,000 transistor, full-duplex serializer-deserializer, including synthesizable PLLs. The author includes everything an engineer needs for in-depth understanding of the Verilog language: Syntax, synthesis semantics, simulation and test. Complete solutions for the 27 labs are provided in the downloadable files that accompany the book. For readers with access to appropriate electronic design tools, all solutions can be developed, simulated, and synthesized as described in the book. A partial list of design topics includes design partitioning, hierarchy decomposition, safe coding styles, back annotation, wrapper modules, concurrency, race conditions, assertion-based verification, clock synchronization, and design for test. A concluding presentation of special topics includes System Verilog and Verilog-AMS.
This book presents fundamental requirements, electrical specification, and parameter tradeoffs of wearable EEG acquisition circuits, especially those compatible with dry electrodes for user-friendly recordings. Â The authors introduce active electrode, the most promising solution for dry electrodes-based EEG measurement. This architectural concept has been combined with various, innovative circuit design techniques to illustrate structured IC design methodologies for high performance EEG recording. This book also gives examples on the design, implementation and evaluation of three generations of active electrode ICs.
This reference text discusses recent advances in the field of nanotechnology with applications in the fields of electronics sector, agriculture, health services, smart cities, food industry, and energy sector in a comprehensive manner. The text begins by discussing important concepts including bio nanotechnology, nano electronics, nano devices, nano medicine, and nano memories. It then comprehensively covers applications of nanotechnology in different areas including healthcare, energy sector, environment, security and defense, agriculture sector, food industry, automotive sector, smart cities, and Internet of Things (IoT). Aimed at senior undergraduate, graduate students and professionals in the fields of electrical engineering, electronics engineering, nanoscience and nanotechnology, this text: Discusses nano image sensors useful for imaging in medical and for security applications. Covers advances in the field of nanotechnology with their applications. It covers important concepts including neuro simulators, nano medicine, and nano materials. Covers applications of nanotechnology in diverse fields including health sector, agriculture, energy sector, and electronics.
This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems. |
You may like...
RF / Microwave Circuit Design for…
Ulrich L. Rohde, Matthias Rudolph
Hardcover
R4,952
Discovery Miles 49 520
Modern Filter Design - Active RC and…
Mohammed S. Ghausi, Kenneth R Laker
Hardcover
R2,724
Discovery Miles 27 240
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
Introduction to Microlithography
Larry F. Thompson, C. Grant Willson, …
Hardcover
R4,772
Discovery Miles 47 720
|