![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
The book presents a systematic journey of analog signal processing in order of the growing complexity of the circuits. It begins by discussing interfacing circuits, different types of amplifiers, single-time constant networks, and higher order networks for system design applications. The book- Presents designing analog circuits using the current-mode technique in a comprehensive manner. Highlights the importance of using current mode building blocks in designing high-performance analog circuits and systems. Discusses in detail the waveform generation circuits and their applications in communication. Covers higher-order analog filters, mixed-mode filter circuits, and electronically tunable filters. Explains instrumentation amplifiers, summing amplifiers, single-ended amplifiers, and voltage to current-converter in detail. This book discusses the electronic tuning aspects of circuits with the help of solved examples and unsolved exercises. It further presents the non-linear applications using current-mode techniques, signal generation for various communication and instrumentation systems, current-mode analog cells, and tuning of analog cells. Each chapter covers the IC compatibility issue, which provides useful direction for carrying out laboratory exercises on the subject. It will serve as an ideal reference text for senior undergraduate, and graduate students in fields including electrical engineering, electronics, and communications engineering.
This edited volume on "Recent Advances in Renewable Energy" presents a selection of refereed papers presented at the 1st International Conference on Electrical Systems and Automation. The book provides rigorous discussions, the state of the art, and recent developments in the field of renewable energy sources supported by examples and case studies, making it an educational tool for relevant undergraduate and graduate courses. The book will be a valuable reference for beginners, researchers, and professionals interested in renewable energy.
This book is jointly authored by leading academic and industry researchers. The material is unique in that it spans IC interconnect topics ranging from IBM's revolutionary copper process to an in-depth exploration into interconnect-aware computer architectures.
Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance."
The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore's Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising Moore-like exponential growth sustainable through to the 2030s.
This volume concentrates on three topics: mixed analog--digital circuit design, sensor interface circuits and communication circuits. The book comprises six papers on each topic of a tutorial nature aimed at improving the design of analog circuits. The book is divided into three parts. Part I: Mixed Analog--Digital Circuit Design considers the largest growth area in microelectronics. Both standard designs and ASICs have begun integrating analog cells and digital sections on the same chip. The papers cover topics such as groundbounce and supply-line spikes, design methodologies for high-level design and actual mixed analog--digital designs. Part II: Sensor Interface Circuits describes various types of signal conditioning circuits and interfaces for sensors. These include interface solutions for capacitive sensors, sigma--delta modulation used to combine a microprocessor compatible interface with on chip CMOS sensors, injectable sensors and responders, signal conditioning circuits and sensors combined with indirect converters. Part III: Communication Circuits concentrates on systems and implemented circuits for use in personal communication systems. These have applications in cordless telephones and mobile telephone systems for use in cellular networks. A major requirement for these systems is low power consumption, especially when operating in standby mode, so as to maximise the time between battery recharges.
Analog-to-digital (A/D) converters are key components in digital signal processing (DSP) systems and are therefore receiving much attention as DSP becomes increasingly prevalent in telephony, audio, video, consumer products, etc. The varying demands on conversion rate, resolution and other characteristics have inspired a large number of competing A/D conversion techniques. Sigma Delta Modulators: Nonlinear Decoding Algorithms and Stability Analysis is concerned with the particular class of A/D techniques called oversampled noise-shaping (ONS) that has recently come into prominence for a number of applications. The popularity of ONS converters is due to their ease of implementation and robustness to circuit imperfectors. An ONS converter consists of an encoder that generates a high-rate, low-resolution digital signal, and a decoder that produces a low-rate, high-resolution digital approximation to the analog encoder input. The conventional decoding approach is based on linear filtering. Sigma Delta Modulators presents the optimal design of an ONS decoder for a given encoder. It is shown that nonlinear decoding can achieve gains in signaling ratio and the encoder architecture. The book then addresses the instability problem that plagues higher-order ONS encoders. A new stability concept is introduced that is well-suited to ONS encoders, and it is applied to the double-loop encoder as well as to the class of interpolative encoders. It is shown that there exists a trade-off between stability and SNR performance. Based on the results, explicit design examples are presented. Sigma Delta Modulators: Nonlinear Decoding Algorithms and Stability Analysis is a valuable reference source for researchers and engineers in industry and academia working on or interested in design and analysis of A/D converters, particularly to those working in quantization theory and signal reconstruction, and can serve as a text for advanced courses on the subjects treated.
This book presents the latest techniques for the design of antenna, focusing specifically on the microstrip antenna. The authors discuss antenna structure, defected ground, MIMO, and fractal design. The book provides the design of microstrip antenna in terms of latest applications and uses in areas like IoT and device-to-device communication. The book also provides the current methods and techniques used for the enhancement of the performance parameters of the microstrip antenna. Chapters enhance the knowledge and skills of students and researchers in the latest in the communications world like IoT, D2D, satellite, wearable devices etc. The authors discuss applications such as microwave imaging, medical implants, hyperthermia treatments, and wireless wellness monitoring and how a decrease in size of antenna help facilitate application potential. Provides the latest techniques used for the design of antenna in terms of its structure, defected ground, MIMO and fractal design; Outlines steps to resolve issues with designing antenna, including the latest design and design parameters for microstrip antenna; Presents the design of conformal and miniaturized antenna structures for various applications.
The text covers fiber optic sensors for biosensing and photo-detection, graphene and CNT-based sensors for glucose, cholesterol, and dopamine detection, and implantable sensors for detecting physiological, bio-electrical, biochemical, and metabolic changes in a comprehensive manner. It further presents a chapter on sensors for military and aerospace applications. It will be useful for senior undergraduate, graduate students, academic researchers in the fields of electrical engineering, electronics, and communication engineering. The book Discusses implantable sensors for detecting physiological, bio-electrical, biochemical, and metabolic changes. Covers applications of sensors in diverse fields including healthcare, industrial flow, consumer electronics, and military. Includes experimental studies such as the detection of biomolecules using SPR sensors and electrochemical sensors for biomolecule detection. Presents artificial neural networks (ANN) based industrial flow sensor modeling. Highlights case studies on surface plasmon resonance sensors, MEMS-based fluidic sensors, and MEMS-based electrochemical gas sensors. The text presents case studies on surface plasmon resonance sensors, MEMS-based fluidic sensors, and MEMS-based electrochemical gas sensors in a single volume. The text will be useful for senior undergraduate, graduate students, academic researchers in the fields of electrical engineering, electronics, and communication engineering.
This book is a study of the workings of dynamic loudspeakers and dynamically forced vibration. With its wealth of practical observations and real-life examples, this work will prove invaluable to the practicing motor design or loudspeaker design engineer, as well as researchers and students in electroacoustics. The book is based on a lifetime's accumulated knowledge by acclaimed speaker designer William H. (Bill) Watkins. It differs from the usual tone of most technical books on this subject by initially presenting, and analyzing in full, the function of each key parameter of a reference dynamic loudspeaker. Each parameter's value is then calculated and also confirmed via lab measurements to vividly illustrate all energy-transduction facets of loudspeaker operation and the forced vibration. This presentation style makes the analysis both more engaging, intuitive, and easier to comprehend compared to most previous works in the field. The principles of this book apply to all direct reciprocating motors, not just those in a dynamic loudspeaker. Unique to the book is an entire chapter dedicated to the discussion of back-EMF voltage, discussed from several technical points of view and analyzed in depth as related to the dynamic transfer of energy between the mechanical and electrical domains. Another unique feature is a detailed discussion of Watkins' patented dual-motor concept to achieve high dynamic speaker performance in the region of its low-frequency resonance.
This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book's unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.
Implantable devices are a unique area for circuit designers. A comprehensive understanding of design trade-offs at the system level is important to ensure device success. Circuit Design Considerations for Implantable Devices provides knowledge to CMOS circuit designers with limited biomedical background to understand design challenges and trade-offs for implantable devices, especially neural interfacing. Technical topics discussed in the book include: Neural interface Neural sensing amplifiers Electrical stimulation Embedded Signal Analysis Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants Next Generation Neural Interface Electronics
Most of the real-life signals are non-stationary in nature. The examples of such signals include biomedical signals, communication signals, speech, earthquake signals, vibration signals, etc. Time-frequency analysis plays an important role for extracting the meaningful information from these signals. The book presents time-frequency analysis methods together with their various applications. The basic concepts of signals and different ways of representing signals have been provided. The various time-frequency analysis techniques namely, short-time Fourier transform, wavelet transform, quadratic time-frequency transforms, advanced wavelet transforms, and adaptive time-frequency transforms have been explained. The fundamentals related to these methods are included. The various examples have been included in the book to explain the presented concepts effectively. The recently developed time-frequency analysis techniques such as, Fourier-Bessel series expansion-based methods, synchrosqueezed wavelet transform, tunable-Q wavelet transform, iterative eigenvalue decomposition of Hankel matrix, variational mode decomposition, Fourier decomposition method, etc. have been explained in the book. The numerous applications of time-frequency analysis techniques in various research areas have been demonstrated. This book covers basic concepts of signals, time-frequency analysis, and various conventional and advanced time-frequency analysis methods along with their applications. The set of problems included in the book will be helpful to gain an expertise in time-frequency analysis. The material presented in this book will be useful for students, academicians, and researchers to understand the fundamentals and applications related to time-frequency analysis.
This book focuses on control techniques for LCL-type grid-connected inverters to improve system stability, control performance and suppression ability of grid current harmonics. Combining a detailed theoretical analysis with design examples and experimental validations, the book offers an essential reference guide for graduate students and researchers in power electronics, as well as engineers engaged in developing grid-connected inverters for renewable energy generation systems.
This book comprises select peer-reviewed papers from the International Conference on VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems (VSPICE-2020). The book provides insights into various aspects of the emerging fields in the areas Electronics and Communication Engineering as a holistic approach. The various topics covered in this book include VLSI, embedded systems, signal processing, communication, power electronics and internet of things. This book mainly focuses on the most recent innovations, trends, concerns and practical challenges and their solutions. This book will be useful for academicians, professionals and researchers in the area of electronics and communications and electrical engineering.
This book investigates the possible circuit solutions to overcome the temperature and supply voltage-sensitivity of fully-integrated time references for ultra-low-power communication in wireless sensor networks. The authors provide an elaborate theoretical introduction and literature study to enable full understanding of the design challenges and shortcomings of current oscillator implementations. Furthermore, a closer look to the short-term as well as the long-term frequency stability of integrated oscillators is taken. Next, a design strategy is developed and applied to 5 different oscillator topologies and 1 sensor interface. All 6 implementations are subject to an elaborate study of frequency stability, phase noise and power consumption. In the final chapter all blocks are compared to the state of the art.
This book includes original, peer-reviewed research papers from the 2020 International Top-Level Forum on Engineering Science and Technology Development Strategy -- the 5th PURPLE MOUNTAIN FORUM on Smart Grid Protection and Control(PMF2020), held in Nanjing, China, on August 15-16, 2020. Hot topics and cutting edge technologies are included: - Advanced Power Transmission Technology - AC-DC Hybrid Power Grid Technology - eIoT Technology and Application - Operation, Protection and Control of Power Systems Supplied with High Penetration of Renewable Energy Sources - Active Distribution Network Technology - Smart Power Consumption and Energy-saving Technology - New Technology on Substation Automation - Clean Energy Technology - Energy Storage Technology and Application - Key Technology and Application of Integrated Energy - Application of AI, Block Chain, Big Data and Other New Technologies in Energy Industry - Application of New Information and Communication Technology in Energy Industry - Application of Technical Standard System and Related Research in Energy Industry The papers included in this proceeding share the latest research results and practical application examples on the methodologies and algorithms in these areas, which makes the book a valuable reference for researchers, engineers, and university students.
This textbook provides an introduction to circuits, systems, and motors for students in electrical engineering as well as other majors that need an introduction to circuits. Unlike most other textbooks that highlight only circuit theory, this book goes into detail on many practical aspects of working with circuits, including electrical safety and the proper method to measure the relevant circuit parameters using modern measurement systems. Coverage also includes a detailed discussion of motors and generators, including brushless DC motors, as these are critical topics in the robotic and mechatronics industries. Lastly, the book discusses A/D and D/A converters given their importance in modern measurement and control systems. In addition to covering the basic circuit concepts, the author also provides the students with the necessary mathematics to analyze correctly the circuit concepts being presented. The chapter on phasor domain circuit analysis begins with a detailed review of complex numbers as many students are weak in this area. Likewise, before discussing filters and Bode Diagrams, the Fourier Transform and later the Laplace Transform are explained.
This book introduces readers to a reconfigurable chip architecture for future wireless communication systems, such as 5G and beyond. The proposed architecture perfectly meets the demands for future mobile communication solutions to support different standards, algorithms, and antenna sizes, and to accommodate the evolution of standards and algorithms. It employs massive MIMO detection algorithms, which combine the advantages of low complexity and high parallelism, and can fully meet the requirements for detection accuracy. Further, the architecture is implemented using ASIC, which offers high energy efficiency, high area efficiency and low detection error. After introducing massive MIMO detection algorithms and circuit architectures, the book describes the ASIC implementation for verifying the massive MIMO detection. In turn, it provides detailed information on the proposed reconfigurable architecture: the data path and configuration path for massive MIMO detection algorithms, including the processing unit, interconnections, storage mechanism, configuration information format, and configuration method.
This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover. The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.
Research and development of logic synthesis and verification have matured considerably over the past two decades. Many commercial products are available, and they have been critical in harnessing advances in fabrication technology to produce today's plethora of electronic components. While this maturity is assuring, the advances in fabrication continue to seemingly present unwieldy challenges. Logic Synthesis and Verification provides a state-of-the-art view of logic synthesis and verification. It consists of fifteen chapters, each focusing on a distinct aspect. Each chapter presents key developments, outlines future challenges, and lists essential references. Two unique features of this book are technical strength and comprehensiveness. The book chapters are written by twenty-eight recognized leaders in the field and reviewed by equally qualified experts. The topics collectively span the field. Logic Synthesis and Verification fills a current gap in the existing CAD literature. Each chapter contains essential information to study a topic at a great depth, and to understand further developments in the field. The book is intended for seniors, graduate students, researchers, and developers of related Computer-Aided Design (CAD) tools. From the foreword: "The commercial success of logic synthesis and verification is due in large part to the ideas of many of the authors of this book. Their innovative work contributed to design automation tools that permanently changed the course of electronic design." by Aart J. de Geus, Chairman and CEO, Synopsys, Inc.
This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gain an insight into the inter-dependence of design parameters under practical constraints. This book serves as a valuable reference for practicing engineers working in the VLSI design area, and as text book for senior undergraduate, graduate and postgraduate students (already familiar with digital circuits and timing).
More than ever, FDL is the place for researchers, developers, industry designers, academia, and EDA tool companies to present and to learn about the latest scientific achievements, practical applications and users experiences in the domain of specification and design languages. FDL covers the modeling and design methods, and their latest supporting tools, for complex embedded systems, systems on chip, and heterogeneous systems. FDL 2009 is the twelfth in a series of events that were held all over Europe, in selected locations renowned for their Universities and Reseach Institutions as well as the importance of their industrial environment in Computer Science and Micro-electronics. In 2009, FDL was organized in the attractive south of France area of Sophia Antipolis. together with the DASIP (Design and Architectures for Signal and Image Processing) Conference and the SAME (Sophia Antipolis MicroElectronics ) Forum. All submitted papers were carefully reviewed to build a program with 27 full and 10 short contributions. From these, the Program Committee selected a shorter list, based on the evaluations of the reviewers, and the originality and relevance of the work that was presented at the Forum. The revised, and sometimes extended versions of these contributions constitute the chapters of this volume. Advances in Design Methods from Modeling Languages for Embedded Systems and SoC's presents extensions to standard specification and description languages, as well as new language-based design techniques and methodologies to solve the challenges raised by mixed signal and multi-processor systems on a chip. It is intended as a reference for researchers and lecturers, as well as a state of the art milestone for designers and CAD developers.
The PID controller is the most common option in the realm of control applications and is dominant in the process control industry. Among the related analytical methods, Internal Model Control (IMC) has gained remarkable industrial acceptance due to its robust nature and good set-point responses. However, the traditional application of IMC results in poor load disturbance rejection for lag-dominant and integrating plants. This book presents an IMC-like design method which avoids this common pitfall and is devised to work well for plants of modest complexity, for which analytical PID tuning is plausible. For simplicity, the design only focuses on the closed-loop sensitivity function, including formulations for the H and H2 norms. Aimed at graduate students and researchers in control engineering, this book: Considers both the robustness/performance and the servo/regulation trade-offs Presents a systematic, optimization-based approach, ultimately leading to well-motivated, model-based, and analytically derived tuning rules Shows how to tune PID controllers in a unified way, encompassing stable, integrating, and unstable processes Finds in the Weighted Sensitivity Problem the sweet spot of robust, optimal, and PID control Provides a common analytical framework that generalizes existing tuning proposals
This book describes reliable and efficient design automation techniques for the design and implementation of an approximate computing system. The authors address the important facets of approximate computing hardware design - from formal verification and error guarantees to synthesis and test of approximation systems. They provide algorithms and methodologies based on classical formal verification, synthesis and test techniques for an approximate computing IC design flow. This is one of the first books in Approximate Computing that addresses the design automation aspects, aiming for not only sketching the possibility, but providing a comprehensive overview of different tasks and especially how they can be implemented. |
You may like...
Agent-Oriented Software Engineering…
Onn Shehory, Arnon Sturm
Hardcover
Social Networks Science: Design…
Nilanjan Dey, Rosalina Babo, …
Hardcover
R2,879
Discovery Miles 28 790
Foundation Models for Natural Language…
Gerhard PaaĆ, Sven Giesselbach
Hardcover
R884
Discovery Miles 8 840
Microelectronic Systems - Circuits…
Albert Heuberger, Gunter Elst, …
Hardcover
R2,706
Discovery Miles 27 060
Internet of Things. A Confluence of Many…
Augusto Casaca, Srinivas Katkoori, …
Hardcover
R1,449
Discovery Miles 14 490
A Handbook of Artificial Intelligence in…
Anil K. Philip, Aliasgar Shahiwala, …
Paperback
R2,963
Discovery Miles 29 630
5G IoT and Edge Computing for Smart…
Akash Kumar Bhoi, Victor Hugo Costa de Albuquerque, …
Paperback
R2,588
Discovery Miles 25 880
Software Services for e-Business and…
Claude Godart, Norbert Gronau, …
Hardcover
R2,725
Discovery Miles 27 250
Artificial Intelligence and Data Science…
Mohsen Asadnia, Amir Razmjou, …
Paperback
R2,578
Discovery Miles 25 780
|