![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
A silicon compiler is a software system which can automatically generate an integrated circuit from a user's specification. Anatomy of a Silicon Compiler examines one such compiler in detail, covering the basic framework and design entry, the actual algorithms and libraries which are used, the approach to verification and testing, behavioral synthesis tools and several applications which demonstrate the system's capabilities.
It is a great honor to provide an introduction for Dr. Frank Op 't Eynde's and Dr. Willy Sansen's book "Analog Interfaces for Digital Signal Processing Systems." The field of analog integrated circuit design is undergoing rapid evolution. The pervasiveness of digital processing has considerably modified the micro-system architectures: the analog part of complex mixed systems is more and more pushed at the boundary limits of the processing chain. Moreover, the increased performance of digital circuits, in terms of accuracy and speed, are making the specification requirements of analog circuits very strict. In addition to this, the technology, supply voltage and power consumption of analog circuits must be compatible with those, typical for digital circuits. Therefore, in a few words, analog circuits are becoming complex and specialised interfaces between the real world and digital signal processing domains. This technological evolution should be accompanied by an equivalently fast evolution in designer competencies. Knowledge of complicated signal handling should be quickly replaced by know-how of simple but very accurate and very fast signal processing and a solid background in data conversion techniques. All of this through the use of the CMOS (and possibly BiCMOS) technology.
From the Foreword..... Modern digital signal processing applications provide a large challenge to the system designer. Algorithms are becoming increasingly complex, and yet they must be realized with tight performance constraints. Nevertheless, these DSP algorithms are often built from many constituent canonical subtasks (e.g., IIR and FIR filters, FFTs) that can be reused in other subtasks. Design is then a problem of composing these core entities into a cohesive whole to provide both the intended functionality and the required performance. In order to organize the design process, there have been two major approaches. The top-down approach starts with an abstract, concise, functional description which can be quickly generated. On the other hand, the bottom-up approach starts from a detailed low-level design where performance can be directly assessed, but where the requisite design and interface detail take a long time to generate. In this book, the authors show a way to effectively resolve this tension by retaining the high-level conciseness of VHDL while parameterizing it to get good fit to specific applications through reuse of core library components. Since they build on a pre-designed set of core elements, accurate area, speed and power estimates can be percolated to high- level design routines which explore the design space. Results are impressive, and the cost model provided will prove to be very useful. Overall, the authors have provided an up-to-date approach, doing a good job at getting performance out of high-level design. The methodology provided makes good use of extant design tools, and is realistic in terms of the industrial design process. The approach is interesting in its own right, but is also of direct utility, and it will give the existing DSP CAD tools a highly competitive alternative. The techniques described have been developed within ARPAs RASSP (Rapid Prototyping of Application Specific Signal Processors) project, and should be of great interest there, as well as to many industrial designers. Professor Jonathan Allen, Massachusetts Institute of Technology
Optimum envelope-constrained filter design is concerned with time-domain synthesis of a filter such that its response to a specific input signal stays within prescribed upper and lower bounds, while minimizing the impact of input noise on the filter output or the impact of the shaped signal on other systems depending on the application. In many practical applications, such as in TV channel equalization, digital transmission, and pulse compression applied to radar, sonar and detection, the soft least square approach, which attempts to match the output waveform with a specific desired pulse, is not the most suitable one. Instead, it becomes necessary to ensure that the response stays within the hard envelope constraints defined by a set of continuous inequality constraints. The main advantage of using the hard envelope-constrained filter formulation is that it admits a whole set of allowable outputs. From this set one can then choose the one which results in the minimization of a cost function appropriate to the application at hand. The signal shaping problems so formulated are semi-infinite optimization problems. This monograph presents in a unified manner results that have been generated over the past several years and are scattered in the research literature. The material covered in the monograph includes problem formulation, numerical optimization algorithms, filter robustness issues and practical examples of the application of envelope constrained filter design. Audience: Postgraduate students, researchers in optimization and telecommunications engineering, and applied mathematicians.
This book describes the design of optical receivers that use the most economical integration technology, while enabling performance that is typically only found in very expensive devices. To achieve this, all necessary functionality, from light detection to digital output, is integrated on a single piece of silicon. All building blocks are thoroughly discussed, including photodiodes, transimpedance amplifiers, equalizers and post amplifiers.
SiGe HBTs are the most mature of the Si heterostructure devices and not surprisingly the most completely researched and discussed in the technical literature. However, new effects and nuances of device operation are uncovered year-after-year as transistor scaling advances and application targets march steadily upward in frequency and sophistication. Providing a comprehensive treatment of SiGe HBTs, Silicon Heterostructure Devices covers an amazingly diverse set of topics, ranging from basic transistor physics to noise, radiation effects, reliability, and TCAD simulation. Drawn from the comprehensive and well-reviewed "Silicon Heterostructure Handbook," this text explores SiGe heterojunction bipolar transistors (HBTs), heterostructure FETs, various other heterostructure devices, as well as optoelectronic components. The book provides an overview, characteristics, and derivative applications for each device covered. It discusses device physics, broadband noise, performance limits, reliability, engineered substrates, and self-assembling nanostructures. Coverage of optoelectronic devices includes Si/SiGe LEDs, near-infrared detectors, photonic transistors for integrated optoelectronics, and quantum cascade emitters. In addition to this substantial collection of material, the book concludes with a look at the ultimate limits of SiGe HBTs scaling. It contains easy-to-reference appendices on topics including the properties of silicon and germanium, the generalized Moll-Ross relations, and the integral charge-control model, and sample SiGe HBT compact model parameters.
The second of two volumes, this is a comprehensive treatment of nonlinear circuits, introducing the advanced topics that professionals need to understand for their RF (radio frequency) circuit design work. It presents an introduction to active RF devices and their modelling, and explores nonlinear circuit simulation techniques. Design techniques are addressed for RF transistor amplifiers, oscillators, mixers and frequency multipliers. This reference concludes with an in-depth look at circuits in systems and their radio system applications, illustrating how the components are interconnected to complete a system that meets the necessary specifications.
For the first time in book form, this comprehensive and systematic monograph presents the methods for the reversible synthesis of logic functions and circuits. This methodology offers designers the capability to solve major problems in system design now and in the future, such as the high rate of power consumption, and the emergence of quantum effects for highly dense ICs. The challenge addressed here is to design reliable systems that consume as little power as possible and in which the signals are processed and transmitted at very high speeds with very high signal integrity. Researchers in academia or industry and graduate students, who work in logic synthesis, computer design, computer-aided design tools, and low power VLSI circuit design, will find this book a valuable resource.
When you see a nicely presented set of data, the natural response is: "How did they do that; what tricks did they use; and how can I do that for myself?" Alas, usually, you must simply keep wondering, since such tricks-of- the-trade are usually held close to the vest and rarely divulged. Shamefully ignored in the technical literature, measurement and modeling of high-speed semiconductor devices is a fine art. Robust measuring and modeling at the levels of performance found in modern SiGe devices requires extreme dexterity in the laboratory to obtain reliable data, and then a valid model to fit that data. Drawn from the comprehensive and well-reviewed "Silicon Heterostructure Handbook," this volume focuses on measurement and modeling of high-speed silicon heterostructure devices. The chapter authors provide experience-based tricks-of-the-trade and the subtle nuances of measuring and modeling advanced devices, making this an important reference for the semiconductor industry. It includes easy-to-reference appendices covering topics such as the properties of silicon and germanium, the generalized Moll-Ross relations, the integral charge-control model, and sample SiGe HBT compact model parameters.
The book is an authoritative collection of contributions by leading experts on the topics of fuzzy logic, multi-valued logic and neural network. Originally written as an homage to Claudio Moraga, seen by his colleagues as an example of concentration, discipline and passion for science, the book also represents a timely reference guide for advance students and researchers in the field of soft computing, and multiple-valued logic.
No matter how you slice it, semiconductor devices power the communications revolution. Skeptical? Imagine for a moment that you could flip a switch and instantly remove all the integrated circuits from planet Earth. A moment's reflection would convince you that there is not a single field of human endeavor that would not come to a grinding halt, be it commerce, agriculture, education, medicine, or entertainment. Life, as we have come to expect it, would simply cease to exist. Drawn from the comprehensive and well-reviewed "Silicon Heterostructure Handbook," this volume covers SiGe circuit applications in the real world. Edited by John D. Cressler, with contributions from leading experts in the field, this book presents a broad overview of the merits of SiGe for emerging communications systems. Coverage spans new techniques for improved LNA design, RF to millimeter-wave IC design, SiGe MMICs, SiGe Millimeter-Wave ICs, and wireless building blocks using SiGe HBTs. The book provides a glimpse into the future, as envisioned by industry leaders.
SiGe HBT BiCMOS technology is the obvious groundbreaker of the Si heterostructures application space. To date virtually every major player in the communications electronics market either has SiGe up and running in-house or is using someone else's SiGe fab as foundry for their designers. Key to this success lies in successful integration of the SiGe HBT and Si CMOS, with no loss of performance from either device. Filled with contributions from leading experts, Fabrication of SiGe HBT BiCMOS Technologies brings together a complete discussion of these topics into a single resource. Drawn from the comprehensive and well-reviewed "Silicon Heterostructure Handbook," this volume examines the design, fabrication, and application of silicon heterostructure transistors. A novel aspect of this book the inclusion of numerous snapshot views of the industrial state-of-the-art for SiGe HBT BiCMOS technology. It has been carefully designed to provide a useful basis of comparison for the current status and future course of the global industry. In addition to the copious technical material and the numerous references contained in each chapter, the book includes easy-to-reference appendices on the properties of Si and Ge, the generalized Moll-Ross relations, integral charge-control relations, and sample SiGe HBT compact model parameters.
Until the 1990s, the reduction of the minimum feature sizes used to fabricate in- grated circuits, called "scaling," has highlighted serious advantages as integration density, speed, power consumption, functionality and cost. Direct consequence was the decrease of cost-per-function, so the electronic productivity has largely progressed in this period. Another usually cited trend is the evolution of the in- gration density as expressed by the well-know Moore's Law in 1975: the number of devices per chip doubles every 2 years. This evolution has allowed improving signi?cantly the circuit complexity, offering a great computing power in the case of microprocessor, for example. However, since few years, signi?cant issues appeared such as the increase of the circuit heating, device complexity, variability and dif?culties to improve the integration density. These new trends generate an important growth in development and production costs. Though is it, since 40 years, the evolution of the microelectronics always f- lowed the Moore's law and each dif?culty has found a solution.
This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis. Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction; Describes new, hybrid solutions for model order reduction; Presents machine learning algorithms in depth, but simply; Uses real, industrial applications to verify algorithms.
Synthesis of Finite State Machines: Functional Optimization is one of two monographs devoted to the synthesis of Finite State Machines (FSMs). This volume addresses functional optimization, whereas the second addresses logic optimization. By functional optimization here we mean the body of techniques that: compute all permissible sequential functions for a given topology of interconnected FSMs, and select a best' sequential function out of the permissible ones. The result is a symbolic description of the FSM representing the chosen sequential function. By logic optimization here we mean the steps that convert a symbolic description of an FSM into a hardware implementation, with the goal to optimize objectives like area, testability, performance and so on. Synthesis of Finite State Machines: Functional Optimization is divided into three parts. The first part presents some preliminary definitions, theories and techniques related to the exploration of behaviors of FSMs. The second part presents an implicit algorithm for exact state minimization of incompletely specified finite state machines (ISFSMs), and an exhaustive presentation of explicit and implicit algorithms for the binate covering problem. The third part addresses the computation of permissible behaviors at a node of a network of FSMs and the related minimization problems of non-deterministic finite state machines (NDFSMs). Key themes running through the book are the exploration of behaviors contained in a non-deterministic FSM (NDFSM), and the representation of combinatorial problems arising in FSM synthesis by means of Binary Decision Diagrams (BDDs). Synthesis of Finite State Machines: Functional Optimization will be of interest to researchers and designers in logic synthesis, CAD and design automation.
Nineteen experts from the electronics industry, research institutes and universities have joined forces to prepare this book. Vacuum Electronics covers the electrophysical fundamentals, the present state of the art and applications, as well as the future prospects of microwave tubes and systems, optoelectronics vacuum devices, electron and ion beam devices, light and X-ray emitters, particle accelerators and vacuum interrupters. These topics are supplemented by useful information about the materials and technologies of vacuum electronics and vacuum technology."
This book on advanced optoisolation circuits for nonlinearity applications in engineering addresses two separate engineering and scientific areas, and presents advanced analysis methods for optoisolation circuits that cover a broad range of engineering applications. The book analyzes optoisolation circuits as linear and nonlinear dynamical systems and their limit cycles, bifurcation, and limit cycle stability by using Floquet theory. Further, it discusses a broad range of bifurcations related to optoisolation systems: cusp-catastrophe, Bautin bifurcation, Andronov-Hopf bifurcation, Bogdanov-Takens (BT) bifurcation, fold Hopf bifurcation, Hopf-Hopf bifurcation, Torus bifurcation (Neimark-Sacker bifurcation), and Saddle-loop or Homoclinic bifurcation. Floquet theory helps as to analyze advance optoisolation systems. Floquet theory is the study of the stability of linear periodic systems in continuous time. Another way to describe Floquet theory, it is the study of linear systems of differential equations with periodic coefficients. The optoisolation system displays a rich variety of dynamical behaviors including simple oscillations, quasi-periodicity, bi-stability between periodic states, complex periodic oscillations (including the mixed-mode type), and chaos. The route to chaos in this optoisolation system involves a torus attractor which becomes destabilized and breaks up into a fractal object, a strange attractor. The book is unique in its emphasis on practical and innovative engineering applications. These include optocouplers in a variety of topological structures, passive components, conservative elements, dissipative elements, active devices, etc. In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advanced levels and closely integrated with mathematical theory. The book is primarily intended for newcomers to linear and nonlinear dynamics and advanced optoisolation circuits, as well as electrical and electronic engineers, students and researchers in physics who read the first book "Optoisolation Circuits Nonlinearity Applications in Engineering". It is ideally suited for engineers who have had no formal instruction in nonlinear dynamics, but who now desire to bridge the gap between innovative optoisolation circuits and advanced mathematical analysis methods.
This book enables readers to design effective ESD protection solutions for all mainstream RF fabrication processes (GaAs pHEMT, SiGe HBT, CMOS). The new techniques introduced by the authors have much higher protection levels and much lower parasitic effects than those of existing ESD protection devices. The authors describe in detail the ESD phenomenon, as well as ESD protection fundamentals, standards, test equipment, and basic design strategies. Readers will benefit from realistic case studies of ESD protection for RFICs and will learn to increase significantly modern RFICs' ESD safety level, while maximizing RF performance.
This book discusses topics related to power electronics, especially electromagnetic transient analysis and control of high-power electronics conversion. It focuses on the re-evaluation of power electronics, transient analysis and modeling, device-based system-safe operating area, and energy balance-based control methods, and presenting, for the first time, numerous experimental results for the transient process of various real-world converters. The book systematically presents both theoretical analysis and practical applications. The first chapter discusses the structure and attributes of power electronics systems, highlighting the analysis and synthesis, while the second chapter explores the transient process and modeling for power electronics systems. The transient features of power devices at switching-on/off, transient conversion circuit with stray parameters and device-based system-safe operating area are described in the subsequent three chapters. The book also examines the measurement of transient processes, electromagnetic pulses and their series, as well as high-performance, closed-loop control, and expounds the basic principles and method of the energy-balanced control strategy. Lastly, it introduces the applications of transient analysis of typical power electronics systems. The book is valuable as a textbook for college students, and as a reference resource for electrical engineers as well as anyone working in the field of high-power electronics system.
The goal of putting systems on a chip' has been a difficult challenge that is only recently being met. Since the world is analog', putting systems on a chip requires putting analog interfaces on the same chip as digital processing functions. Since some processing functions are accomplished more efficiently in analog circuitry, chips with a large amount of analog and digital circuitry are being designed. Whether a small amount of analog circuitry is combined with varying amounts of digital circuitry or the other way around, the problem encountered in marrying analog and digital circuitry are the same but with different scope. Some of the most prevalent problems are chip/package capacitive and inductive coupling, ringing on the RLC tuned circuits that form the chip/package power supply rails and off-chip drivers and receivers, coupling between circuits through the chip substrate bulk, and radiated emissions from the chip/package interconnects. To aggravate the problems of designers who have to deal with the complexity of mixed-signal coupling there is a lack of verification techniques to simulate the problem. In addition to considering RLC models for the various chip/package/board level parasitics, mixed-signal circuit designers must also model coupling through the common substrate when simulating ICs to obtain an accurate estimate of coupled noise in their designs. Unfortunately, accurate simulation of substrate coupling has only recently begun to receive attention, and techniques for the same are not widely known. Simulation Techniques and Solutions for Mixed-Signal Coupling in Integrated Circuits addresses two major issues of the mixed-signal coupling problem -- how to simulate it and how to overcome it. It identifies some of the problems that will be encountered, gives examples of actual hardware experiences, offers simulation techniques, and suggests possible solutions. Readers of this book should come away with a clear directive to simulate their design for interactions prior to building the design, versus a build it and see' mentality.
This book presents various novel architectures for FPGA-optimized accurate and approximate operators, their detailed accuracy and performance analysis, various techniques to model the behavior of approximate operators, and thorough application-level analysis to evaluate the impact of approximations on the final output quality and performance metrics. As multiplication is one of the most commonly used and computationally expensive operations in various error-resilient applications such as digital signal and image processing and machine learning algorithms, this book particularly focuses on this operation. The book starts by elaborating on the various sources of error resilience and opportunities available for approximations on various layers of the computation stack. It then provides a detailed description of the state-of-the-art approximate computing-related works and highlights their limitations.
In today's globally competitive wireless industry, the design-to-production cycle is critically important. Circuit and system engineers must be able to develop robust designs that can be mass produced. To accomplish this, engineers need to learn the requirements of, and solutions leading to, optimum performance. The first of a two-volume set, this text takes a practical approach to RF (radio frequency) circuit design, offering an understanding of the fundamental concepts that practitioners need to know and use for their work in this industry. It seeks to lay the groundwork for efficient passive circuit design.
This volume gives an overview of the state-of-the-art in system-level design trade-off explorations for concurrent tasks running on embedded heterogeneous multiple processors. The targeted application domain covers complex embedded real-time multi-media and communication applications. Many of these applications are concurrent in the sense that multiple subsystems can be running simultaneously. Also, these applications are so dynamic at run-time that the designs based on the worst case execution times are inefficient in terms of resource allocation (e.g., energy budgets). A novel systematical approach is clearly necessary in the area of system-level design for the embedded systems where those concurrent and dynamic applications are mapped. This material is mainly based on research at IMEC and its international university network partners in this area in the period 1997-2006.
For the first time in power electronics, this comprehensive treatment of switch-mode DC/DC converter designs addresses many analytical closed form equations such as duty cycle prediction, output regulation, output ripple, control loop-gain, and steady state time-domain waveform. Each of these equations are given various topologists and configurations, including forward, flyback, and boost converters. Pulse Width Modulated DC/DC Converters begins with a detailed approach to the quiescent operating locus of a power plant under open-loop. The reader is then led through other supporting circuits once again in the quiescent condition. These exercises result in the close-loop formulations of the subject system, providing designers with the ability to study the sensitivities of a system against disturbances. With the quiescent conditions well established, the book then guides the reader further into the territories of system stability where small signal behaviors are explored. Finally, some important large signal time-domain studies cap the treatment. Some distinctive features of this book include: *detailed coverage of dynamic close-loop converter simulations using only personal computer and modern mathematical software *Steady-state, time-domain analysis based on the concept of continuity of states Voltage-mode and current-mode control techniques and their differences of merits A detailed description on setting up different equations for DC/DC converters'simulation using only PC
"Reconfigurable RF Power Amplifiers on Silicon for Wireless Handsets" is intended to designers and researchers who have to tackle the efficiency/linearity trade-off in modern RF transmitters so as to extend their battery lifetime. High data rate 3G/4G standards feature broad channel bandwidths, high dynamic range and critical envelope variations which generally forces the power amplifier (PA) to operate in a low efficiency "backed-off" regime. Classic efficiency enhancement techniques such as Envelope Elimination and Restoration reveal to be little compliant with handset-dedicated PA implementation due to their channel-bandwidth-limited behavior and their increased die area consumption and/or bill-of-material. The architectural advances that are proposed in this book circumvent these issues since they put the stress on low die-area /low power-consumption control circuitry. The advantages of silicon over III/V technologies are highlighted by several analogue signal processing techniques that can be implemented on-chip with a power amplifier. System-level and transistor-level simulations are combined to illustrate the principles of the proposed power adaptive solutions. Measurement on BICMOS demonstrators allows validating the functionality of dynamic linearity/efficiency management. In "Reconfigurable RF Power Amplifiers on Silicon for Wireless Handsets," PA designers will find a review of technologies, architectures and theoretical formalisms (Volterra series...) that are traditionally related to PA design. Specific issues that one encounters in power amplifiers (such as thermal / memory effects, stability, VSWR sensitivity...) and the way of overcoming them are also extensively considered throughout this book. |
![]() ![]() You may like...
Mastering Python - How to learn Python…
Programming Academy
Hardcover
Ramanujan's Lost Notebook - Part V
George E. Andrews, Bruce C. Berndt
Hardcover
R3,919
Discovery Miles 39 190
|