![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.
This book gathers selected research papers presented at the International Conference on Power, Control and Communication Infrastructure 2019 (ICPCCI 2019), organized by the Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, India, on July 4-5, 2019. It highlights the latest advances, trends and challenges in electrical power generation-integration-transmission-distribution-conversion-storage-control, electrical machines, power quality, energy management, electrical infrastructure of future grids-buildings-cities-transportation, energy conversion, plasma technology, renewable energy & grid integration, energy storage systems, power electronic converters, power system protection & security, FACTS and HVDC, power quality, power system operation & control, computer applications in power systems, energy management, energy policies & regulation, power & energy education, restructured power system, future grids, buildings, cities & resiliency, microgrids, electrical machines & drives, transportation electrification, optimal operation, electricity-gas-water coordination, condition monitoring & predictive maintenance of electric equipment, and asset management. The solutions discussed here will encourage and inspire researchers, industry professionals and policymakers to put these methods into practice.
Rapid increases in chip complexity, increasingly faster clocks, and the proliferation of portable devices have combined to make power dissipation an important design parameter. The power consumption of a digital system determines its heat dissipation as well as battery life. For some systems, power has become the most critical design constraint. Computer-Aided Design Techniques for Low Power Sequential Logic Circuits presents a methodology for low power design. The authors first present a survey of techniques for estimating the average power dissipation of a logic circuit. At the logic level, power dissipation is directly related to average switching activity. A symbolic simulation method that accurately computes the average switching activity in logic circuits is then described. This method is extended to handle sequential logic circuits by modeling correlation in time and by calculating the probabilities of present state lines. Computer-Aided Design Techniques for Low Power Sequential Logic Circuits then presents a survey of methods to optimize logic circuits for low power dissipation which target reduced switching activity. A method to retime a sequential logic circuit where registers are repositioned such that the overall glitching in the circuit is minimized is also described. The authors then detail a powerful optimization method that is based on selectively precomputing the output logic values of a circuit one clock cycle before they are required, and using the precomputed value to reduce internal switching activity in the succeeding clock cycle. Presented next is a survey of methods that reduce switching activity in circuits described at the register-transfer and behavioral levels. Also described is a scheduling algorithm that reduces power dissipation by maximising the inactivity period of the modules in a given circuit. Computer-Aided Design Techniques for Low Power Sequential Logic Circuits concludes with a summary and directions for future research.
This text contributes to the field of sequential optimization for finite-state machines, introducing several new provably-optimal algorithms, presenting practical software implementations of each of these algorithms and introducing a complete new CAD package, called MINIMALIST. Real-world industrial designs are used as benchmark circuits throughout.
The electromechanical systems employed in different branches of
industry are utilized most often as drives of working machines
which must be fed with electric energy in a continuous, periodic or
even discrete way. Some of these machines operate at constant
speed, others require wide and varying energy control. In many
designs the synchronous cooperation of several electric drives is
required in addition to the desired dynamic properties. For these
reasons the control of the cooperation and dynamics of
electromechanical systems requires the use of computers.
Electric Energy Systems, Second Edition provides an analysis of electric generation and transmission systems that addresses diverse regulatory issues. It includes fundamental background topics, such as load flow, short circuit analysis, and economic dispatch, as well as advanced topics, such as harmonic load flow, state estimation, voltage and frequency control, electromagnetic transients, etc. The new edition features updated material throughout the text and new sections throughout the chapters. It covers current issues in the industry, including renewable generation with associated control and scheduling problems, HVDC transmission, and use of synchrophasors (PMUs). The text explores more sophisticated protections and the new roles of demand, side management, etc. Written by internationally recognized specialists, the text contains a wide range of worked out examples along with numerous exercises and solutions to enhance understanding of the material. Features Integrates technical and economic analyses of electric energy systems. Covers HVDC transmission. Addresses renewable generation and the associated control and scheduling problems. Analyzes electricity markets, electromagnetic transients, and harmonic load flow. Features new sections and updated material throughout the text. Includes examples and solved problems.
This contributed volume offers practical solutions and design-, modeling-, and implementation-related insights that address current research problems in memristors, memristive devices, and memristor computing. The book studies and addresses related challenges in and proposes solutions for the future of memristor computing. State-of-the-art research on memristor modeling, memristive interconnections, memory circuit architectures, software simulation tools, and applications of memristors in computing are presented. Utilising contributions from numerous experts in the field, written in clear language and illustrated throughout, this book is a comprehensive reference work. Memristor Computing Systems explains memristors and memristive devices in an accessible way for graduate students and researchers with a basic knowledge of electrical and control systems engineering, as well as prompting further research for more experienced academics.
Designing reliable and dependable embedded systems has become increasingly important as the failure of these systems in an automotive, aerospace or nuclear application can have serious consequences. Design and Test Technology for Dependable Systems-on-Chip covers aspects of system design and efficient modelling, and also introduces various fault models and fault mechanisms associated with digital circuits integrated into System on Chip (SoC), Multi-Processor System-on Chip (MPSoC) or Network on Chip (NoC). This book provides insight into refined classical design and test topics and solutions for IC test technology and fault-tolerant systems.
This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillators and waveform generators, with their relevant design details and their salient performance features/limitations.
Unique selling point: * Contains electronics device, Circuits, systems as well as applications of Integrated Circuits in healthcare and security never before considered Core audience: * Researchers and post graduates Place in the market: * Includes key new finding of electronic devices for Security Applications, and Integrated Circutis for healthcare and security Applications with advanced
Describes the basic theory of carrier transport, develops numerical algorithms in FORTRAN used for transport problems or device simulations, and presents real-world examples.
This book presents a detailed summary of research on automatic layout of device-level analog circuits that was undertaken in the late 1980s and early 1990s at Carnegie Mellon University. We focus on the work behind the creation of the tools called KOAN and ANAGRAM II, which form part of the core of the CMU ACACIA analog CAD system. KOAN is a device placer for custom analog cells; ANANGRAM II a detailed area router for these analog cells. We strive to present the motivations behind the architecture of these tools, including detailed discussion of the subtle technology and circuit concerns that must be addressed in any successful analog or mixed-signal layout tool. Our approach in organizing the chapters of the book has been to present our algo rithms as a series of responses to these very real and very difficult analog layout problems. Finally, we present numerous examples of results generated by our algorithms. This research was supported in part by the Semiconductor Research Corpora tion, by the National Science Foundation, by Harris Semiconductor, and by the International Business Machines Corporation Resident Study Program. Finally, just for the record: John Cohn was the designer of the KOAN placer; David Garrod was the designer of the ANAGRAM II router (and its predeces sor, ANAGRAM I). This book was architected by all four authors, edited by John Cohn and Rob Rutenbar, and produced in finished form by John Cohn."
Mixed Signal Test Methods Demystified is a less theoretical, less
mathematical, and more applications-oriented approach than other
books available on the topic. In effect, this book will give
readers a "just in time" understanding of the essentials of mixed
signal testing techniques. Emphasis will be on commonly used
devices and systems (such as PLLs and DSP) that engineers encounter
in their daily tasks. Sampling theory is covered in detail, as this
is the foundation for understanding all mixed signal testing
technique, and readers will have a strong intuitive grasp of this
topic after finishing this book.
This book will give insight into emerging semiconductor devices from their applications in electronic circuits, which are the backbone of electronic equipment. It provides desired exposure to the ever-growing field of low-power electronic devices and their applications in nanoscale devices, memory design, and biosensing applications. Tunneling Field Effect Transistors: Design, Modeling, and Applications bring researchers and engineers from various disciplines of the VLSI domain together to tackle the emerging challenges in the field of nanoelectronics and applications of advanced low-power devices. The book begins by discussing the challenges of conventional CMOS technology from the perspective of low-power applications. The book also reviews the basic science and developments of subthreshold swing technology and recent advancements in the field. The authors discuss the impact of semiconductor materials and architecture designs on TFET devices and the performance and usage of FET devices in various domains like nanoelectronics, Memory Devices, and biosensing applications. The authors also cover a variety of FET devices, such as MOSFETs and TFETs, with various structures based on the tunneling transport phenomenon. The contents of the book have been designed and arranged in such a way that Electrical Engineering students, researchers in the field of nanodevices and device-circuit codesign, as well as industry professionals working in the domain of semiconductor devices, will find the material useful and easy to follow.
This book describes a comprehensive combination of methodologies that strongly enhance the modern Virtual Prototype (VP)-based verification flow for heterogeneous systems-on-chip (SOCs). In particular, the book combines verification and analysis aspects across various stages of the VP-based verification flow, providing a new perspective on verification by leveraging advanced techniques, like metamorphic testing, data flow testing, and information flow testing. In addition, the book puts a strong emphasis on advanced coverage-driven methodologies to verify the functional behavior of the SOC as well as ensure its security. Provides an extensive introduction to the modern VP-based verification flow for heterogeneous SOCs; Introduces a novel metamorphic testing technique for heterogeneous SOCs which does not require reference models; Includes automated advanced data flow coverage-driven methodologies tailored for SystemC/AMS-based VPs; Describes enhanced functional coverage-driven methodologies to verify various functional behaviors of RF amplifiers.
"Intuitive Analog Circuit Design" outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and "back-of-the-envelope" techniques for designing and analyzing analog circuits, including transistor amplifiers (CMOS, JFET, and bipolar), transistor switching, noise in analog circuits, thermal circuit design, magnetic circuit design, and control systems. The application of some simple rules of thumb and design techniques is the first step in developing an intuitive understanding of the behavior of complex electrical systems. Introducing analog circuit design with a minimum of mathematics,
this book uses numerous real-world examples to help you make the
transition to analog design. The second edition is an ideal
introductory text for anyone new to the area of analog circuit
design.
This book is intended to give a general overview of reliability, faults, fault models, nanotechnology, nanodevices, fault-tolerant architectures and reliability evaluation techniques. Additionally, the book provides an in depth state-of-the-art research results and methods for fault tolerance as well as the methodology for designing fault-tolerant systems out of highly unreliable components.
The task of the system architect is to take the correct early decisions despite the uncertainties. Power-Aware Architecting provides a systematic way to support the system architect in this job. Therefore, an iterative system-level design approach is defined where iterations are based on fast and accurate estimations or predictions of area, performance and energy consumption. This method is illustrated with a concrete real life example of multi-carrier communication. This book is the result of a Ph.D. thesis, which is part of the UbiCom project at Delft University of Technology. I strongly recommend it to any engineer, expert or specialist, who is interested in designing embedded systems-on-a-chip. Jef van Meerbergen
This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evaluation, knowledge discovery and knowledge transfer. With its emphasis on the above topics, the book provides an in-depth and broad view of reasoning-based fault diagnosis system design. * Explains and applies optimized techniques from the machine-learning domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing;* Demonstrates techniques based on industrial data and feedback from an actual manufacturing line;* Discusses practical problems, including diagnosis accuracy, diagnosis time cost, evaluation of diagnosis system, handling of missing syndromes in diagnosis, and need for fast diagnosis-system development.
Over 100 scientists met at the IBM Research Laboratory in San Jose. California for a symposium on the Physics and Chemistry of Liquid Crystal Devices. The two-day meeting was intellectually stimulating with excellent oral presentations and with person-to-person discussions. The applications of liquid crystals have developed dramatically in the past ten years. In these few years, they have moved from being a laboratory curiosity to products in the market place. The first commercial application (1940's) of liquid crystals was the preparation of a light polarizer. The second commercial application was their use as temperature sensors. The third major application of liquid crystals dealt with commercial displays. Other current applications include polymeric and graphitic fibers and light attenuators. The future of liquid crystals looks very promising indeed. One can expect to see new fibers of qualities which will be superior to those presently known. Graphitic fibers or other physical forms of graphitic materials will be used as catalytic surfaces for chemical synthesis. In the display area. one can expect to see television screens using liquid crystals. Larger displays than are now used in wrist watches and pocket calculators will become available. Liquid crystals using color displays will become commercially practical. Watches. calculators and television screens will have color.
This is a textbook for upper undergraduate and graduate courses on microwave engineering, written in a student-friendly manner with many diagrams and illustrations. It works towards developing a foundation for further study and research in the field. The book begins with a brief history of microwaves and introduction to core concepts of EM waves and wave guides. It covers equipment and concepts involved in the study and measurement of microwaves. The book also discuses microwave propagation in space, microwave antennae, and all aspects of RADAR. The book provides core pedagogy with chapter objectives, summaries, solved examples, and end-of-chapter exercises. The book also includes a bonus chapter which serves as a lab manual with 15 simple experiments detailed with proper circuits, precautions, sample readings, and quiz/viva questions for each experiment. This book will be useful to instructors and students alike.
Several diverse but related topics concerned with semiconductor growth are brought together here, for the first time in a single text. Those studying semiconductor growth from any perspective will find this book invaluable and it will be essential reading for all in the semiconductor industry, whether in applications or in manufacturing.
This second edition focuses on the thought process of digital design and implementation in the context of VLSI and system design. It covers the Verilog 2001 and Verilog 2005 RTL design styles, constructs and the optimization at the RTL and synthesis level. The book also covers the logic synthesis, low power, multiple clock domain design concepts and design performance improvement techniques. The book includes 250 design examples/illustrations and 100 exercise questions. This volume can be used as a core or supplementary text in undergraduate courses on logic design and as a text for professional and vocational coursework. In addition, it will be a hands-on professional reference and a self-study aid for hobbyists.
Computer Methods for Analysis of Mixed-Mode Switching Circuits
provides an in-depth treatment of the principles and implementation
details of computer methods and numerical algorithms for analysis
of mixed-mode switching circuits. Major topics include:
During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an in-depth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation. |
![]() ![]() You may like...
Introduction to Microlithography
Larry F. Thompson, C. Grant Willson, …
Hardcover
R4,951
Discovery Miles 49 510
Nano-CMOS and Post-CMOS Electronics…
Saraju P. Mohanty, Ashok Srivastava
Hardcover
Network-on-Chip - Architecture…
Isiaka A Alimi, Oluyomi Aboderin, …
Hardcover
R3,396
Discovery Miles 33 960
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
|