![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
This book describes innovative techniques and the theoretical background for design and analysis of high performance RF/Microwave transmitters. It introduces new, robust linearization/efficiency enhancement techniques, applicable to all of the switched mode power amplifiers. Novel analysis methods associated with these new techniques are also introduced and supporting measurement results are documented. Innovative graphical representation methods are used to help the reader understand the matter intuitively. Applications for the techniques discussed are very extensive, ranging from data convertors to RF/Microwave/mm-wave wireless/wire line transmitters. The authors have avoided using lengthy formulas in the discussion and have used an intuitive and simple approach to go through the necessary details. Readers will gain valuable understanding of the dither phenomenon, its mechanism, effect and undesired side effects. The novel architectures introduced are simple, don't require complicated DSP techniques and are easy to implement.
This text discusses simulation process for circuits including clamper, voltage and current divider, transformer modeling, transistor as an amplifier, transistor as a switch, MOSFET modeling, RC and LC filters, step and impulse response to RL and RC circuits, amplitude modulator in a step-by-step manner for more clarity and understanding to the readers. It covers electronic circuits like rectifiers, RC filters, transistor as an amplifier, operational amplifiers, pulse response to a series RC circuit, time domain simulation with a triangular input signal, and modulation in detail. The text presents issues that occur in practical implementation of various electronic circuits and assist the readers in finding solutions to those issues using the software. Aimed at undergraduate, graduate students, and academic researchers in the areas including electrical and electronics and communications engineering, this book: Discusses simulation of analog circuits and their behavior for different parameters. Covers AC/DC circuit modeling using regular and parametric sweep methods. The theory will be augmented with practical electrical circuit examples that will help readers to better understand the topic. Discusses circuits like rectifiers, RC filters, transistor as an amplifier, and operational amplifiers in detail.
Functional Verification Coverage Measurement and Analysis addresses a means of quantitatively assessing functional verification progress. Without this process, design and verification engineers, and their management, are left guessing whether or not they have completed verifying the device they are designing. Using the techniques described in this book, they will learn how to build a toolset which allows them to know how close they are to functional closure. Functional Verification Coverage Measurement and Analysis is the first book to introduce a useful taxonomy for coverage metric classification. Using this taxonomy, the reader clearly understands the process of creating an effective coverage model. A must read Harry Foster, Jasper Design Automation, Co-Author of Assertion-Based Design Andrew's book is the most thoughtful and comprehensive treatment of coverage I have seen. I recommend reading (and re-reading) this book to anybody who is really serious about functional verification. Yoav Hollander, CTO, Verisity Design In the last few years, coverage has become a must in hardware verification and in software testing. From having to push people to use coverage, the situation changed to great interest... Andrew's excellent and comprehensive book on coverage, the first of its kind, could not have come at a better time. Shmuel Ur, Research Scientist, IBM
Low-Energy FPGAs: Architecture and Design is a primary resource for both researchers and practicing engineers in the field of digital circuit design. The book addresses the energy consumption of Field-Programmable Gate Arrays (FPGAs). FPGAs are becoming popular as embedded components in computing platforms. The programmability of the FPGA can be used to customize implementations of functions on an application basis. This leads to performance gains, and enables reuse of expensive silicon. Chapter 1 provides an overview of digital circuit design and FPGAs. Chapter 2 looks at the implication of deep-submicron technology onFPGA power dissipation. Chapter 3 describes the exploration environment to guide and evaluate design decisions. Chapter 4 discusses the architectural optimization process to evaluate the trade-offs between the flexibility of the architecture, and the effect on the performance metrics. Chapter 5 reviews different circuit techniques to reduce the performance overhead of some of the dominant components. Chapter 6 shows methods to configure FPGAs to minimize the programming overhead. Chapter 7 addresses the physical realization of some of the critical components and the final implementation of a specific low-energy FPGA. Chapter 8 compares the prototype array to an equivalent commercial architecture.
This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions.
Contains a disk of all the example problems included in the book Embedded systems are altering the landscape of electronics manufacturing worldwide, giving many consumer products sophisticated capabilities undreamt of even a few years ago. The explosive proliferation of built-in computers and the variety of design methods developed in both industry and academia necessitates the sort of pragmatic guidance offered in Embedded Systems Design with 8051 Microcontrollers. This enormously practical reference/text explains the developments in microcontroller technology and provides lucid instructions on its many and varied applications-focusing on the popular 8-bit microcontroller, the 8051, and the 83C552. Outlines a systematic methodology for design of small-scale, control-dominated embedded systems Including end-of-chapter problems that reinforce essential concepts and end-of-chapter references with URLs, Embedded Systems Design with 8051 Microcontrollers reviews basic concepts, from logic gates to Internet appliances considers 8051 and 83C552 microcontrollers as parallel running processors and embedded peripherals introduces a coherent taxonomy and symbols for microcontroller flags provides a succession of assembly language examples such as electromechanical and digital clocks examines digital interfacing at two hierarchical levels: interface to typical system components and interaction with the outside world covers applications of analog interfacing, from elementary forms to advanced designs for speech machines discusses serial interfaces suitable for distributed embedded systems demonstrates the transition from classical design approaches to the hardware-software codesign with case studies of a simplified EPROM programmer and an EPROM emulator and more Profusely illustrated with over 250 drawings and diagrams, this state-of-the-art resource is a must-read reference for electrical, electronics, computer, industrial, and
This work covers the design of CMOS fully integrated low power low phase noise voltage controlled oscillators for telecommunication or datacommuni- tion systems. The need for low power is obvious, as mobile wireless telecommunications are battery operated. As wireless telecommunication systems use oscillators in frequency synthesizers for frequency translation, the selectivity and signal to noise ratio of receivers and transmitters depend heavily on the low phase noise performance of the implemented oscillators. Datacommunication s- tems need low jitter, the time-domain equivalent of low phase noise, clocks for data detection and recovery. The power consumption is less critical. The need for multi-band and multi-mode systems pushes the high-integration of telecommunication systems. This is o?ered by sub-micron CMOS feat- ing digital ?exibility. The recent crisis in telecommunication clearly shows that mobile hand-sets became mass-market high-volume consumer products, where low-cost is of prime importance. This need for low-cost products - livens tremendously research towards CMOS alternatives for the bipolar or BiCMOS solutions in use today.
Higher Electronics is a comprehensive text for electronics undergraduates, covering analogue, digital electronics and microelectronics in a single volume - at a level suitable for most first and second year modules. The text is highly student-centred, providing numerous * worked examples with step-by-step guidance and hints * highlighted key facts and points of interest * self-check questions scattered through the text * problem sections (with answers supplied) It has been written to suit courses with an intake from a range of educational backgrounds, and a minimum of prior knowledge is assumed. Higher Electronics has been written to be fully in line with units 8-12 of the new BTEC Higher National specifications from Edexcel. This makes it the text of choice for all students following an electronics / electrical pathway through an HNC or HND. The student-centred text is ideal for the new course, and follows on especially well for students from a GNVQ background. The style and approach of Higher Electronics is consistent with the new text from Newnes, Higher National Engineering, which covers the mandatory units (units 1-7) of the new Higher National scheme.
High-speed, reliable connectivity for next-generation system design Providing a detailed description of RapidIO applications in several types of system, "RapidIO: The Embedded System Interconnect" is the first comprehensive reference on the RapidIO interconnect technology. RapidIO was developed specifically to achieve high-performance, low-cost, reliable and scalable system connectivity in embedded, networking, and communications devices. This book presents the motivations for RapidIO and describes how it compares with other interconnect technologies. Written by one of the founders of the RapidIO Trade Association, this unique resource: Presents an introductory section detailing the history of the RapidIO technology Provides a practical guide for all of the RapidIO logical layer protocols, network, link and physical layer technologies Discusses the usage of RapidIO in embedded systems such as enterprise storage and wireless infrastructure Illustrates newly defined technologies such as the RapidFabric dataplane extensions Describes case studies of RapidIO usage in real system architectures Evaluates the programming models associated with RapidIO Reviews related mechanical standards such as the VME Switched Serial Extensions and the PICMG Advanced Telecommunications Architecture (ATCA) standards. "RapidIO: The Embedded System Interconnect" is an essential tool for professionals involved in the development of large-scale, high-performance embedded networking, communications and related equipment. With accessible contributions from industry leaders, this book also serves as an excellent reference for common RapidIO packet and symbol formats, register file definitions and systemsoftware application programming interfaces.
Test and Design-for-Testability in Mixed-Signal Integrated Circuits deals with test and design for test of analog and mixed-signal integrated circuits. Especially in System-on-Chip (SoC), where different technologies are intertwined (analog, digital, sensors, RF); test is becoming a true bottleneck of present and future IC projects. Linking design and test in these heterogeneous systems will have a tremendous impact in terms of test time, cost and proficiency. Although it is recognized as a key issue for developing complex ICs, there is still a lack of structured references presenting the major topics in this area. The aim of this book is to present basic concepts and new ideas in a manner understandable for both professionals and students. Since this is an active research field, a comprehensive state-of-the-art overview is very valuable, introducing the main problems as well as the ways of solution that seem promising, emphasizing their basis, strengths and weaknesses. In essence, several topics are presented in detail. First of all, techniques for the efficient use of DSP-based test and CAD test tools. Standardization is another topic considered in the book, with focus on the IEEE 1149.4. Also addressed in depth is the connecting design and test by means of using high-level (behavioural) description techniques, specific examples are given. Another issue is related to test techniques for well-defined classes of integrated blocks, like data converters and phase-locked-loops. Besides these specification-driven testing techniques, fault-driven approaches are described as they offer potential solutions which are more similar to digital test methods. Finally, in Design-for-Testability and Built-In-Self-Test, two other concepts that were taken from digital design, are introduced in an analog context and illustrated for the case of integrated filters. In summary, the purpose of this book is to provide a glimpse on recent research results in the area of testing mixed-signal integrated circuits, specifically in the topics mentioned above. Much of the work reported herein has been performed within cooperative European Research Projects, in which the authors of the different chapters have actively collaborated. It is a representative snapshot of the current state-of-the-art in this emergent field.
Electronics for Service Engineers is the first text designed
specifically for the Level 2 NVQs in Electronics Servicing. It
provides the underpinning knowledge required by brown goods and
white goods students, reflecting the popularity of the EMTA white
goods NVQs. It has also been written in the light of the new EEB /
City & Guilds Level 2 progression award (RVQ) for brown goods
and commercial electronics, dubbed 'son of 2240', and the existing
2240 part 1.
This textbook is designed for an introductory, one-semester course in Signals and Systems for undergraduates. It is written to be concise, clear, and yet comprehensive to make it easier for the students to learn this important subject with high mathematical complexity. The popular MATLAB (R) software package is used for programming and simulation. Every new concept is explained with figures and examples for a clear understanding. The simple and clear style of presentation, along with comprehensive coverage, enables students to obtain a solid foundation in the subject and for use in practical applications.
The process of designing large real-time embedded signal processing systems is plagued by a lack of coherent specification and design methodology. A canonical waterfall design process is commonly used to specify, design, and implement these systems with commercial-off-the-shelf (COTS) multiprocessing (MP) hardware and software. Powerful frameworks exist for each individual phase of this canonical design process, but no single methodology exists which enables these frameworks to work together coherently, i.e., allowing the output of a framework used in one phase to be consumed by a different framework used in the next phase. This lack of coherence usually leads to design errors that are not caught until well in to the implementation phase. Since the cost of redesign increases as the design moves through these three stages, redesign is the most expensive if not performed until the implementation phase, thus making the current incoherent methodology costly. Specification and Design Methodology for Real-Time Embedded Systems shows how designs targeting COTS MP technologies can be improved by providing a coherent coupling between these frameworks, a quality known as "model continuity. This book presents a new specification and design methodology (SDM) which accomplishes the requirements specification, design exploration, and implementation of COTS MP-based signal processing systems by using powerful commercial frameworks that are intelligently integrated into a single domain-specific SDM. From the foreword: "This book is remarkably practical. It provides an excellent snapshot of the state-of-the-art and gives the reader a good understanding of both the fundamental challenges of specificationand design as well as a unified and quantified ability to assess a given methodology." Daniel Gajski, University of California
The 2 nd Edition of Analog Integrated Circuit Design focuses on more coverage about several types of circuits that have increased in importance in the past decade. Furthermore, the text is enhanced with material on CMOS IC device modeling, updated processing layout and expanded coverage to reflect technical innovations. CMOS devices and circuits have more influence in this edition as well as a reduced amount of text on BiCMOS and bipolar information. New chapters include topics on frequency response of analog ICs and basic theory of feedback amplifiers.
'Broadband Opto-Electrical Receivers in Standard CMOS' fits in the quest for integrated opto-electrical solutions, and focuses on the receiver front-end. To further reduce the cost, the cheapest technology is selected: standard CMOS, without any optical tricks or flavors. The emphasis is on the analysis, design and implementation of high-performance analog receiver circuits.The book starts from the basic fundamentals, necessary for the design of opto-electronic interface circuits. The book continues with an in-depth analysis of the photodiode, transimpedance amplifier (TIA) and limiting amplifier (LA).
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The volume is based on the 2021 ApplePies Conference, held online in September 2021, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
This book presents the research challenges that are due to the introduction of the 3rd dimension in chips for researchers and covers the whole architectural design approach for 3D-SoCs. Nowadays the 3D-Integration technologies, 3D-Design techniques, and 3D-Architectures are emerging as interesting, truly hot, broad topics. The present book gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures. This book includes contributions from high level international teams working in this field.
This book showcases the state of the art in the field of electronics, as presented by researchers and engineers at the 53rd Annual Meeting of the Italian Electronics Society (SIE), held in Rende (CS), Italy, on September 5-7, 2022. It covers a broad range of aspects, including: integrated circuits and systems, micro- and nano-electronic devices, microwave electronics, sensors and microsystems, optoelectronics and photonics, power electronics, electronic systems and applications.
iming, timing, timing! That is the main concern of a digital designer charged with designing a semiconductor chip. What is it, how is it T described, and how does one verify it? The design team of a large digital design may spend months architecting and iterating the design to achieve the required timing target. Besides functional verification, the t- ing closure is the major milestone which dictates when a chip can be - leased to the semiconductor foundry for fabrication. This book addresses the timing verification using static timing analysis for nanometer designs. The book has originated from many years of our working in the area of timing verification for complex nanometer designs. We have come across many design engineers trying to learn the background and various aspects of static timing analysis. Unfortunately, there is no book currently ava- able that can be used by a working engineer to get acquainted with the - tails of static timing analysis. The chip designers lack a central reference for information on timing, that covers the basics to the advanced timing veri- cation procedures and techniques.
This book introduces a new branch of evaluation theory, where evaluation and score calculation is embedded into general measure theory, as is typical in geometry, probability theory and reliability theory. The author describes the theoretical background of new evaluation model for complex processes, where interests of involved groups are considered as multi-players of evaluation process. Readers will learn how the logical structure of a process/system can be included into an evaluation. The author applies these techniques not only to the visualization of evaluation goals, but also the designed logical structure becomes the basis for calculation of evaluation scores. Various examples are provides to demonstrate the implementation of the methods.
The book covers a range of topics dealing with emerging computing technologies which are being developed in response to challenges faced due to scaling CMOS technologies. It provides a sneak peek into the capabilities unleashed by these technologies across the complete system stack, with contributions by experts discussing device technology, circuit, architecture and design automation flows. Presenting a gradual progression of the individual sub-domains and the open research and adoption challenges, this book will be of interest to industry and academic researchers, technocrats and policymakers. Chapters "Innovative Memory Architectures Using Functionality Enhanced Devices" and "Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.
'Practical Analog Electronics for Technicians' not only provides an accessible introduction to electronics, but also supplies all the problems and practical activities needed to gain hands-on knowledge and experience. This emphasis on practice is surprisingly unusual in electronics texts, and has already gained Will Kimber popularity through the companion volume, 'Practical Digital Electronics for Technicians'. Written to cover the Advanced GNVQ optional unit in electronics, this book is also ideal for BTEC National, A-level electronics and City & Guilds courses. Together with 'Practical Digital Electronics for Technicians', this text comprises a complete practical electronics course designed for students with little prior knowledge of the subject.
Design considerations for low-power operations and robustness with respect to variations typically impose contradictory requirements. Low-power design techniques such as voltage scaling, dual-threshold assignment and gate sizing can have large negative impact on parametric yield under process variations. This book focuses on circuit/architectural design techniques for achieving low power operation under parameter variations. We consider both logic and memory design aspects and cover modeling and analysis, as well as design methodology to achieve simultaneously low power and variation tolerance, while minimizing design overhead. This book will discuss current industrial practices and emerging challenges at future technology nodes.
Rapid increases in chip complexity, increasingly faster clocks, and the proliferation of portable devices have combined to make power dissipation an important design parameter. The power consumption of a digital system determines its heat dissipation as well as battery life. For some systems, power has become the most critical design constraint. Computer-Aided Design Techniques for Low Power Sequential Logic Circuits presents a methodology for low power design. The authors first present a survey of techniques for estimating the average power dissipation of a logic circuit. At the logic level, power dissipation is directly related to average switching activity. A symbolic simulation method that accurately computes the average switching activity in logic circuits is then described. This method is extended to handle sequential logic circuits by modeling correlation in time and by calculating the probabilities of present state lines. Computer-Aided Design Techniques for Low Power Sequential Logic Circuits then presents a survey of methods to optimize logic circuits for low power dissipation which target reduced switching activity. A method to retime a sequential logic circuit where registers are repositioned such that the overall glitching in the circuit is minimized is also described. The authors then detail a powerful optimization method that is based on selectively precomputing the output logic values of a circuit one clock cycle before they are required, and using the precomputed value to reduce internal switching activity in the succeeding clock cycle. Presented next is a survey of methods that reduce switching activity in circuits described at the register-transfer and behavioral levels. Also described is a scheduling algorithm that reduces power dissipation by maximising the inactivity period of the modules in a given circuit. Computer-Aided Design Techniques for Low Power Sequential Logic Circuits concludes with a summary and directions for future research. |
![]() ![]() You may like...
Fundamentals of Algebraic Graph…
Hartmut Ehrig, Karsten Ehrig, …
Hardcover
R3,428
Discovery Miles 34 280
Worst-Case Execution Time Aware…
Paul Lokuciejewski, Peter Marwedel
Hardcover
R4,507
Discovery Miles 45 070
Computability, Complexity and Languages…
Martin Davis, Ron Sigal, …
Hardcover
Computing with Data - An Introduction to…
Guy Lebanon, Mohamed El-Geish
Hardcover
R2,907
Discovery Miles 29 070
C++ How to Program: Horizon Edition
Harvey Deitel, Paul Deitel
Paperback
R1,917
Discovery Miles 19 170
|