![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
This book describes a set of SystemC-based virtual prototype analysis methodologies, including design understanding, verification, security validation, and design space exploration. Readers will gain an overview of the latest research results in the field of Electronic Design Automation (EDA) at the Electronic System Level (ESL). The methodologies discussed enable readers to tackle easily key tasks and applications in the design process.
This book describes power management integrated circuits (PMIC), for power converters and voltage regulators necessary for energy efficient and small form factor systems. The authors discuss state-of-the-art PMICs not only for battery powered wearable devices, but also energy harvesting-based devices. The circuits presented support voltage scaling to reduce the overall average power consumption of a wearable device, resulting in longer device operating time. The discussion includes many designs, control techniques and approaches to distribute efficiently the power among different blocks in the device. * Demonstrates for readers how to innovate in designing power management integrated circuits (PMIC) suitable for wearable devices, powered by either battery or harvesting energy; * Introduces a dual outputs switched capacitor, using a single voltage regulator to minimize the area overhead and discusses the effect of having more than two outputs on the area and power efficiency; * Introduces a novel clock-less digital LDO regulator that eliminates the use of the clocked comparator and serial shift register in the conventional design; * Presents experimental results of energy harvesting-based power management units (PMU), using different combinations of power converters and voltage regulators, providing a guide for designers to select the appropriate option based on device requirements.
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated predictor feedback and predictor feedback The properties of the solutions to a class of parametric (differential and difference) Lyapunov matrix equations are presented in detail Detailed numerical examples and applications to the spacecraft rendezvous and formation flying problems are provided to demonstrate the usefulness of the presented theoretical results This book can be a useful resource for the researchers, engineers, and graduate students in the fields of control, applied mathematics, mechanical engineering, electrical engineering, and aerospace engineering.
The CMOS technology are has quickly grown, calling for a new text---and here it is, covering the analysis and design of CMOS integrated circuits that practicing engineers need to master to succeed. Filled with many examples and chapter-ending problems, the book not only describes the thought process behind each circuit topology, but also considers the rationale behind each modification. The analysis and design techniques focus on CMOS circuits but also apply to other IC technologies. Design of Analog CMOS Integrated Circuits deals with the analysis and design of analog CMOS integrated circuits, emphasizing recent technological developments and design paradigms that students and practicing engineers need to master to succeed in today's industry. Based on the author's teaching and research experience in the past ten years, the text follows three general principles: (1) Motivate the reader by describing the significance and application of each idea with real-world problems; (2) Force the reader to look at concepts from an intuitive point of view, preparing him/her for more complex problems; (3) Complement the intuition by rigorous analysis, confirming the results obtained by the intuitive, yet rough approach.
This book explores the technological developments at various levels of abstraction, of the new paradigm of approximate computing. The authors describe in a single-source the state-of-the-art, covering the entire spectrum of research activities in approximate computing, bridging device, circuit, architecture, and system levels. Content includes tutorials, reviews and surveys of current theoretical/experimental results, design methodologies and applications developed in approximate computing for a wide scope of readership and specialists. Serves as a single-source reference to state-of-the-art of approximate computing; Covers broad range of topics, from circuits to applications; Includes contributions by leading researchers, from academia and industry.
This book introduces the concept of holistic design and development of cyber physical systems to achieve their safe and secure operation. It shows that by following the standards for embedded system's safety and using appropriate hardware and software components inherently safe system's architectures can be devised and certified. While the standards already enable testing and certification of inherently safe and sound hardware, this is still not the case with software. The book demonstrates that Specification PEARL(SPEARL) addresses this issue and proposes appropriate solutions from the viewpoints of software engineering as well as concrete program components. By doing so it reduces the complexity of cyber physical systems design in an innovative way. Three ultimate goals are being followed in the course of defining this new PEARL standard, namely: 1. simplicity over complexity, 2. inherent real-time ability, and 3. conformity to safety integrity and security capability levels.
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section.
This book guides readers through the entire complex of interrelated theoretical and practical aspects of the end-to-end design and organization of production of silicon submicron integrated circuits. The discussion includes the theoretical foundations of the operation of field-effect- and bipolar transistors, the methods and peculiarities of the structural and schematic design, basic circuit-design and system-design engineering solutions for bipolar, CMOS, BiCMOS and TTL integrated circuits, standard design libraries, and typical design flows.
This book provides insights into the 3rd International Conference on Communication, Devices and Computing (ICCDC 2021), which was held in Haldia, India, on August 16-18, 2021. It covers new ideas, applications, and the experiences of research engineers, scientists, industrialists, scholars, and students from around the globe. The proceedings highlight cutting-edge research on communication, electronic devices, and computing and address diverse areas such as 5G communication, spread spectrum systems, wireless sensor networks, and signal processing for secure communication, error control coding, printed antennas, analysis of wireless networks, antenna array systems, analog and digital signal processing for communication systems, frequency selective surfaces, radar communication, and substrate integrated waveguide and microwave passive components, which are key to state-of-the-art innovations in communication technologies.
Co-Synthesis of Hardware and Software for Digital Embedded Systems, with a Foreword written by Giovanni De Micheli, presents techniques that are useful in building complex embedded systems. These techniques provide a competitive advantage over purely hardware or software implementations of time-constrained embedded systems. Recent advances in chip-level synthesis have made it possible to synthesize application-specific circuits under strict timing constraints. This work advances the state of the art by formulating the problem of system synthesis using both application-specific as well as reprogrammable components, such as off-the-shelf processors. Timing constraints are used to determine what part of the system functionality must be delegated to dedicated application-specific hardware while the rest is delegated to software that runs on the processor. This co-synthesis of hardware and software from behavioral specifications makes it possible to realize real-time embedded systems using off-the-shelf parts and a relatively small amount of application-specific circuitry that can be mapped to semi-custom VLSI such as gate arrays. The ability to perform detailed analysis of timing performance provides the opportunity of improving the system definition by creating better phototypes. Co-Synthesis of Hardware and Software for Digital Embedded Systems is of interest to CAD researchers and developers who want to branch off into the expanding field of hardware/software co-design, as well as to digital system designers who are interested in the present power and limitations of CAD techniques and their likely evolution.
The book proposes new technologies and discusses innovative solutions to various problems in the field of communication, circuits, and systems, as reflected in high-quality papers presented at International Conference on Communication, Circuits, and Systems (IC3S 2020) held at KIIT, Bhubaneswar, India from 16 - 18 October 2020. It brings together new works from academicians, scientists, industry professionals, scholars, and students together to exchange research outcomes and open up new horizons in the areas of signal processing, communications, and devices.
This book describes systematically wireless power transfer technology using magnetic resonant coupling and electric resonant coupling and presents the latest theoretical and phenomenological approaches to its practical implementation, operation and its applications. It also discusses the difference between electromagnetic induction and magnetic resonant coupling, the characteristics of various types of resonant circuit topologies and the unique features of magnetic resonant coupling methods. Designed to be self-contained, this richly illustrated book is a valuable resource for a broad readership, from researchers to engineers and anyone interested in cutting-edge technologies in wireless power transfer.
This book presents a collection of "lessons" on various topics commonly encountered in electronic circuit design, including some basic circuits and some complex electronic circuits, which it uses as vehicles to explain the basic circuits they are composed of. The circuits considered include a linear amplifier, oscillators, counters, a digital clock, power supplies, a heartbeat detector, a sound equalizer, an audio power amplifier and a radio. The theoretical analysis has been deliberately kept to a minimum, in order to dedicate more time to a "learning by doing" approach, which, after a brief review of the theory, readers are encouraged to use directly with a simulator tool to examine the operation of circuits in a "virtual laboratory." Though the book is not a theory textbook, readers should be familiar with the basic principles of electronic design, and with spice-like simulation tools. To help with the latter aspect, one chapter is dedicated to the basic functions and commands of the OrCad P-spice simulator used for the experiments described in the book.
This book provides comprehensive coverage of state-of-the-art integrated circuit authentication techniques, including technologies, protocols and emerging applications. The authors first discuss emerging solutions for embedding unforgeable identifies into electronics devices, using techniques such as IC fingerprinting, physically unclonable functions and voltage-over-scaling. Coverage then turns to authentications protocols, with a special focus on resource-constrained devices, first giving an overview of the limitation of existing solutions and then presenting a number of new protocols, which provide better physical security and lower energy dissipation. The third part of the book focuses on emerging security applications for authentication schemes, including securing hardware supply chains, hardware-based device attestation and GPS spoofing attack detection and survival. Provides deep insight into the security threats undermining existing integrated circuit authentication techniques; Includes an in-depth discussion of the emerging technologies used to embed unforgeable identifies into electronics systems; Offers a comprehensive summary of existing authentication protocols and their limitations; Describes state-of-the-art authentication protocols that provide better physical security and more efficient energy consumption; Includes detailed case studies on the emerging applications of IC authentication schemes.
This book brings together a selection of the best papers from the twenty-first edition of the Forum on specification and Design Languages Conference (FDL), which took place on September 10-12, 2018, in Munich, Germany. FDL is a well-established international forum devoted to dissemination of research results, practical experiences and new ideas in the application of specification, design and verification languages to the design, modeling and verification of integrated circuits, complex hardware/software embedded systems, and mixed-technology systems. Covers Assertion Based Design, Verification & Debug; Includes language-based modeling and design techniques for embedded systems; Covers design, modeling and verification of mixed physical domain and mixed signal systems that include significant analog parts in electrical and non-electrical domains; Includes formal and semi-formal system level design methods for complex embedded systems based on the Unified Modelling Language (UML) and Model Driven Engineering (MDE).
This book offers readers an overview of some of the most recent advances in the field of advanced materials used for gamma and X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and GaAs, as well as perovskite crystals, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.
The field of Digital Signal Processing has developed so fast in the last two decades that it can be found in the graduate and undergraduate programs of most universities. This development is related to the growing available techno logies for implementing digital signal processing algorithms. The tremendous growth of development in the digital signal processing area has turned some of its specialized areas into fields themselves. If accurate information of the signals to be processed is available, the designer can easily choose the most appropriate algorithm to process the signal. When dealing with signals whose statistical properties are unknown, fixed algorithms do not process these signals efficiently. The solution is to use an adaptive filter that automatically changes its characteristics by optimizing the internal parameters. The adaptive filtering algorithms are essential in many statistical signal processing applications. Although the field of adaptive signal processing has been subject of research for over three decades, it was in the eighties that a major growth occurred in research and applications. Two main reasons can be credited to this growth, the availability of implementation tools and the appearance of early textbooks exposing the subject in an organized form. Presently, there is still a lot of activities going on in the area of adaptive filtering. In spite of that, the theor etical development in the linear-adaptive-filtering area reached a maturity that justifies a text treating the various methods in a unified way, emphasizing the algorithms that work well in practical implementation."
Analog Test Signal Generation Using Periodic SigmaDelta-Encoded Data Streams presents a new method to generate high quality analog signals with low hardware complexity. The theory of periodic SigmaDelta-encoded bitstreams is presented along with a set of empirical tables to help select the appropriate parameters of a bitstream. An optimization procedure is also outlined to help select a bit sequence with the desired attributes. A large variety of signals can be generated using this approach. Silicon implementation issues are discussed with a specific emphasis on area overhead and ease of design. One FPGA circuit and three different silicon implementations are presented along with experimental results. It is shown that simple designs are capable of generating very high precision signals-on-chip. The technique is further extended to multi-bit signal generation where it is shown how to increase the performance of arbitrary waveform, generators commonly found in past and present-day mixed-signal testers. No hardware modifications are required, only the numbers in memory are changed. Three different calibration techniques to reduce the effects of the AWG's non-linearities are also introduced, together with supporting experimental evidence. The main focus of this text is to describe an area-efficient technique for analog signal generation using SigmaDelta-encoded data stream. The main characteristics of the technique are: High quality signals (SFDR of 110 dB observed); Large variety of signals generated; Bitstreams easily obtained with a fast optimization program; Good frequency resolution, compatible with coherent sampling; Simple and fast hardware implementation; Mostly digital, except an easily testable 1-bit DAC and possibly a reconstruction filter; Memory already available on-chip can be reused, reducing area overhead; Designs can be incorporated into existing CAD tools; High frequency generation.
This book describes approaches for integrating more automation to the early stages of EDA design flows. Readers will learn how natural language processing techniques can be utilized during early design stages, in order to automate the requirements engineering process and the translation of natural language specifications into formal descriptions. This book brings together leading experts to explain the state-of-the-art in natural language processing, enabling designers to integrate these techniques into algorithms, through existing frameworks.
Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation. This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system.
Presents sensor specification, theory of operation, sensor design, and application criteria Provides background plus specific information for practicing engineers who want to understand sensors Includes a complete chapter on industrial sensor communication protocols Explains temperature sensitivity, how to determine, and how to avoid Discusses how to understand and utilize sensor specifications
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The book is based on the 2019 ApplePies Conference, held in Pisa, Italy in September 2019, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
This book offers a concise introduction to the analysis of electrical transients aimed at students who have completed introductory circuits and freshman calculus courses. While it is written under the assumption that these students are encountering transient electrical circuits for the first time, the mathematical and physical theory is not 'watered-down.' That is, the analysis of both lumped and continuous (transmission line) parameter circuits is performed with the use of differential equations (both ordinary and partial) in the time domain, and the Laplace transform. The transform is fully developed in the book for readers who are not assumed to have seen it before. The use of singular time functions (unit step and impulse) is addressed and illustrated through detailed examples. The appearance of paradoxical circuit situations, often ignored in many textbooks (because they are, perhaps, considered 'difficult' to explain) is fully embraced as an opportunity to challenge students. In addition, historical commentary is included throughout the book, to combat the misconception that the material in engineering textbooks was found engraved on Biblical stones, rather than painstakingly discovered by people of genius who often went down many wrong paths before finding the right one. MATLAB (R) is used throughout the book, with simple codes to quickly and easily generate transient response curves.
This book shows in a comprehensive presentation how Bond Graph methodology can support model-based control, model-based fault diagnosis, fault accommodation, and failure prognosis by reviewing the state-of-the-art, presenting a hybrid integrated approach to Bond Graph model-based fault diagnosis and failure prognosis, and by providing a review of software that can be used for these tasks. The structured text illustrates on numerous small examples how the computational structure superimposed on an acausal bond graph can be exploited to check for control properties such as structural observability and control lability, perform parameter estimation and fault detection and isolation, provide discrete values of an unknown degradation trend at sample points, and develop an inverse model for fault accommodation. The comprehensive presentation also covers failure prognosis based on continuous state estimation by means of filters or time series forecasting. This book has been written for students specializing in the overlap of engineering and computer science as well as for researchers, and for engineers in industry working with modelling, simulation, control, fault diagnosis, and failure prognosis in various application fields and who might be interested to see how bond graph modelling can support their work. Presents a hybrid model-based, data-driven approach to failure prognosis Highlights synergies and relations between fault diagnosis and failure prognostic Discusses the importance of fault diagnosis and failure prognostic in various fields
This book discusses the latest developments and outlines future trends in the fields of microelectronics, electromagnetics and telecommunication. It contains original research works presented at the International Conference on Microelectronics, Electromagnetics and Telecommunication (ICMEET 2021), held in Bhubaneswar, Odisha, India during 27 - 28 August 2021. The papers were written by scientists, research scholars and practitioners from leading universities, engineering colleges and R&D institutes from all over the world and share the latest breakthroughs in and promising solutions to the most important issues facing today's society. |
You may like...
Nano-CMOS and Post-CMOS Electronics…
Saraju P. Mohanty, Ashok Srivastava
Hardcover
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
RF / Microwave Circuit Design for…
Ulrich L. Rohde, Matthias Rudolph
Hardcover
R4,952
Discovery Miles 49 520
|