![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
This book brings together selective and specific chapters on nanoscale carbon and applications, thus making it unique due to its thematic content. It provides access to the contemporary developments in carbon nanomaterial research in electronic applications. Written by professionals with thorough expertise in similar broad area, the book is intended to address multiple aspects of carbon research in a single compiled edition. It targets professors, scientists and researchers belonging to the areas of physics, chemistry, engineering, biology and medicine, and working on theory, experiment and applications of carbon nanomaterials.
This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to "RF and Microwave Microelectronics Packaging" (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in understanding the leading issues in the commercial sector. It is also a good reference and self-studying guide for students seeking future employment in consumer electronics.
This holistic book is an invaluable reference for addressing various practical challenges in architecting and engineering Intelligent IoT and eHealth solutions for industry practitioners, academic and researchers, as well as for engineers involved in product development. The first part provides a comprehensive guide to fundamentals, applications, challenges, technical and economic benefits, and promises of the Internet of Things using examples of real-world applications. It also addresses all important aspects of designing and engineering cutting-edge IoT solutions using a cross-layer approach from device to fog, and cloud covering standards, protocols, design principles, reference architectures, as well as all the underlying technologies, pillars, and components such as embedded systems, network, cloud computing, data storage, data processing, big data analytics, machine learning, distributed ledger technologies, and security. In addition, it discusses the effects of Intelligent IoT, which are reflected in new business models and digital transformation. The second part provides an insightful guide to the design and deployment of IoT solutions for smart healthcare as one of the most important applications of IoT. Therefore, the second part targets smart healthcare-wearable sensors, body area sensors, advanced pervasive healthcare systems, and big data analytics that are aimed at providing connected health interventions to individuals for healthier lifestyles.
This book presents select proceedings of the International Conference on Advances in Electrical Control and Signal Systems (AECSS) 2019. The focus is on the current developments in control and signal systems in electrical engineering, and covers various topics such as power systems, energy systems, micro grid, smart grid, networks, fuzzy systems and their control. The book also discusses various properties and performance of signal systems and their applications in different fields. The contents of this book can be useful for students, researchers as well as professionals working in power and energy systems, and other related fields.
Testing of Integrated Circuits is important to ensure the production of fault-free chips. However, testing is becoming cumbersome and expensive due to the increasing complexity of these ICs. Technology development has made it possible to produce chips where a complete system, with an enormous transistor count, operating at a high clock frequency, is placed on a single die - SOC (System-on-Chip). The device size miniaturization leads to new fault types, the increasing clock frequencies enforces testing for timing faults, and the increasing transistor count results in a higher number of possible fault sites. Testing must handle all these new challenges in an efficient manner having a global system perspective. Test design is applied to make a system testable. In a modular core-based environment where blocks of reusable logic, the so called cores, are integrated to a system, test design for each core include: test method selection, test data (stimuli and responses) generation (ATPG), definition of test data storage and partitioning [off-chip as ATE (Automatic Test Equipment) and/or on-chip as BIST (Built-In Self-Test)], wrapper selection and design (IEEE std 1500), TAM (test access mechanism) design, and test scheduling minimizing a cost function whilst considering limitations and constraint. A system test design perspective that takes all the issues above into account is required in order to develop a globally optimized solution. SOC test design and its optimization is the topic of this book. It gives an introduction to testing, describes the problems related to SOC testing, discusses the modeling granularity and the implementation into EDA (electronic design automation)tools. The book is divided into three sections: i) test concepts, ii) SOC design for test, and iii) SOC test applications. The first part covers an introduction into test problems including faults, fault types, design-flow, design-for-test techniques such as scan-testing and Boundary Scan. The second part of the book discusses SOC related problems such as system modeling, test conflicts, power consumption, test access mechanism design, test scheduling and defect-oriented scheduling. Finally, the third part focuses on SOC applications, such as integrated test scheduling and TAM design, defect-oriented scheduling, and integrating test design with the core selection process.
An interdisciplinary work offering an introduction to the basic principles and operational characteristics of semiconductor sensors. Describes sensor technology, stressing bulk and surface micromachining. Considers a sensor group related to a special physical, chemical or biological input signal. The final chapter deals with integrated sensors. Each chapter includes a summary, problem sets and a discussion of future sensor trends.
Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.
This book investigates the control and optimization of grid-tied power converters, with a special attention attached to pulse width modulation, which determines the size and cost of power converters as well as switching harmonics. Through the methods introduced in this book, multiple grid-tied power converters safely operate and coordinate in a highly efficient and reliable fashion, thereby boosting the operation of modern power grids. To facilitate understanding, the key methods are presented together with their associated algorithms and detailed software codes. In parallel to theoretical treatments, this book further applies the methods into practical scenarios and industrial products, thus enhancing their credibility. The book serves as a guidance for electrical engineers and researchers in the field of power electronics and power systems.
Analog Signal Processing brings together in one place important contributions and state-of-the-art research results in this rapidly advancing area. Analog Signal Processing serves as an excellent reference, providing insight into some of the most important issues in the field.
Classical Feedback Control with Nonlinear Multi-Loop Systems describes the design of high-performance feedback control systems, emphasizing the frequency-domain approach widely used in practical engineering. It presents design methods for high-order nonlinear single- and multi-loop controllers with efficient analog and digital implementations. Bode integrals are employed to estimate the available system performance and to determine the ideal frequency responses that maximize the disturbance rejection and feedback bandwidth. Nonlinear dynamic compensators provide global stability and improve transient responses. This book serves as a unique text for an advanced course in control system engineering, and as a valuable reference for practicing engineers competing in today's industrial environment.
This book introduces the origin of biomedical signals and the operating principles behind them and introduces the characteristics of common biomedical signals for subsequent signal measurement and judgment. Since biomedical signals are captured by wearable devices, sensor devices, or implanted devices, these devices are all battery-powered to maintain long working time. We hope to reduce their power consumption to extend service life, especially for implantable devices, because battery replacement can only be done through surgery. Therefore, we must understand how to design low-power integrated circuits. Both implantable and in-vitro medical signal detectors require two basic components to collect and transmit biomedical signals: an analog-to-digital converter and a frequency synthesizer because these measured biomedical signals are wirelessly transmitted to the relevant receiving unit. The core unit of wireless transmission is the frequency synthesizer, which provides a wide frequency range and stable frequency to demonstrate the quality and performance of the wireless transmitter. Therefore, the basic operating principle and model of the frequency synthesizer are introduced. We also show design examples and measurement results of a low-power low-voltage integer-N frequency synthesizer for biomedical applications. The detection of biomedical signals needs to be converted into digital signals by an analog-to-digital converter to facilitate subsequent signal processing and recognition. Therefore, the operating principle of the analog-to-digital converter is introduced. We also show implementation examples and measurement results of low-power low-voltage analog-to-digital converters for biomedical applications.
This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between "More Moore" and "More than Moore" are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.
A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today's space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.
This book explores circuit designs that accomplish the conversion of an analog signal to a digital signal of a single bit. Starting with the simple comparator, many alternative circuit arrangements and enhancements are elaborated, including hysteresis, negative feedback and a variety of adaptive thresholds. Further, the non-ideal behavior of practical elements and circuits are covered, including input offsets, noise, delay, delay dispersion and oscillation, along with techniques for dealing with these aspects. The wide variety of available components is discussed in terms of performance and applicability. No stone is left unturned in addressing each and every issue that can affect the engineering tasks related to comparators, from the viewpoint of how their performance can affect the system in which they are a critical component.
This book provides readers with a single-source reference to the state-of-the-art in analog and mixed-signal circuit design in nanoscale CMOS. Renowned authors from academia describe creative circuit solutions and techniques, in state-of-the-art designs, enabling readers to deal with today's technology demands for high integration levels with a strong miniaturization capability.
This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors, actuators, micro- and nano-structured materials, mechanisms of interaction and signal transduction, polymers and biomaterials, sensor electronics and instrumentation, analytical microsystems, recognition systems and signal analysis and sensor networks as well as manufacturing technologies, environmental, food, energy and biomedical applications. The book gathers a selection of papers presented at the AISEM Regional Workshop on Sensors and Microsystems, held in Portici (Naples), Italy in February 2020.
Comprehensive coverage of theory and applications alike Superconductor Technology is an essential reference for physicists, research scientists, microwave engineers, optical system and communication engineers, and others in a variety of disciplines. Clearly written and well-organized, it is also a compelling and accessible text for undergraduate and graduate students.
This book addresses the fundamental challenges underlying bioelectronics and tissue interface for clinical investigation. Appropriate for biomedical engineers and researchers, the authors cover topics ranging from retinal implants to restore vision, implantable circuits for neural implants, and intravascular electrochemical impedance to detect unstable plaques. In addition to these chapters, the authors also document the approaches and issues of multi-scale physiological assessment and monitoring in both humans and animal models for health monitoring and biological investigations; novel biomaterials such as conductive and biodegradable polymers to be used in biomedical devices; and the optimization of wireless power transfer via inductive coupling for batteryless and wireless implantable medical devices. In addition to engineers and researchers, this book is also an ideal supplementary or reference book for a number of courses in biomedical engineering programs, such as bioinstrumentation, MEMS/BioMEMS, bioelectronics and sensors, and more. Analyzes and discusses the electrode-tissue interfaces for optimization of biomedical devices. Introduces novel biomaterials to be used in next-generation biomedical devices. Discusses high-frequency transducers for biomedical applications.
This book contains detailed descriptions and associated discussions regarding different generation, detection and signal processing techniques for the electrical and optical signals within the THz frequency spectrum (0.3-10 THz). It includes detailed reviews of some recently developed electronic and photonic devices for generating and detecting THz waves, potential materials for implementing THz passive circuits, some newly developed systems and methods associated with THz wireless communication, THz antennas and some cutting-edge techniques associated with the THz signal and image processing. The book especially focuses on the recent advancements and several research issues related to THz sources, detectors and THz signal and image processing techniques; it also discusses theoretical, experimental, established and validated empirical works on these topics. The book caters to a very wide range of readers from basic science to technological experts as well as students.
A NATO Advanced Research Workshop (ARW) entitled "Advanced Materials and Technologies for Micro/Nano Devices, Sensors and Actuators" was held in St. Petersburg, Russia, from June 29 to July 2, 2009. The main goal of the Workshop was to examine (at a fundamental level) the very complex scientific issues that pertain to the use of micro- and nano-electromechanical systems (MEMS and NEMS), devices and technologies in next generation commercial and defen- related applications. Micro- and nano-electromechanical systems represent rather broad and diverse technological areas, such as optical systems (micromirrors, waveguides, optical sensors, integrated subsystems), life sciences and lab equipment (micropumps, membranes, lab-on-chip, membranes, microfluidics), sensors (bio-sensors, chemical sensors, gas-phase sensors, sensors integrated with electronics) and RF applications for signal transmission (variable capacitors, tunable filters and antennas, switches, resonators). From a scientific viewpoint, this is a very multi-disciplinary field, including micro- and nano-mechanics (such as stresses in structural materials), electronic effects (e. g. charge transfer), general electrostatics, materials science, surface chemistry, interface science, (nano)tribology, and optics. It is obvious that in order to overcome the problems surrounding next-generation MEMS/NEMS devices and applications it is necessary to tackle them from different angles: theoreticians need to speak with mechanical engineers, and device engineers and modelers to listen to surface physicists. It was therefore one of the main objectives of the workshop to bring together a multidisciplinary team of distinguished researchers.
This book describes the most frequently used high-speed serial buses in embedded systems, especially those used by FPGAs. These buses employ SerDes, JESD204, SRIO, PCIE, Aurora and SATA protocols for chip-to-chip and board-to-board communication, and CPCIE, VPX, FC and Infiniband protocols for inter-chassis communication. For each type, the book provides the bus history and version info, while also assessing its advantages and limitations. Furthermore, it offers a detailed guide to implementing these buses in FPGA design, from the physical layer and link synchronization to the frame format and application command. Given its scope, the book offers a valuable resource for researchers, R&D engineers and graduate students in computer science or electronics who wish to learn the protocol principles, structures and applications of high-speed serial buses.
This book provides readers with an introduction to the materials and devices necessary for flexible sensors and electronics, followed by common techniques for fabrication of such devices and system-level integration. Key insights into fabrication and processing will guide readers through the tradeoff choices in designing such platforms. A comprehensive review of two specific, flexible bioelectronic platforms, related to smart bandages for wound monitoring and thread-based diagnostics for wearable health, will demonstrate practical application at the system level. The book also provides a unique electrical engineering perspective by reviewing circuit architectures for low noise signal conditioning of weak signals from sensors,, and for low power analog to digital converters for signal acquisition. To achieve energy autonomy, authors provide several example of CMOS energy harvesting front end circuits and voltage boosters. Beyond circuit architectures, the book also provides a review of the modern theory of sampling and recovery of sparse signals, also known as compressed sensing. They then highlight how these principles can be leveraged for design and implementation of efficient signal acquisition hardware and reliable processing of acquired data for flexible electronic platforms.
The book Electric Circuit AnalysisA" has been designed as an introductory course for all disciplines of Engineering and has a much greater significance for students of Electrical, Communication & Instrumentation Engineering. This book helps in learning the basics of electrical circuit elements and provides the ways to connect them in circuit. Also some of the basic mathematical techniques are given, useful for solving linear differential equations which is a pre-requisite of both undergraduate and graduate programmes. In this revised edition, the main objective is to provide a detailed account of basic circuit concept, circuit model and methods of circuit analysis in time and frequency domain for solving simple and multidimensional circuit problems.
This book pioneers the field of gain-cell embedded DRAM (GC-eDRAM) design for low-power VLSI systems-on-chip (SoCs). Novel GC-eDRAMs are specifically designed and optimized for a range of low-power VLSI SoCs, ranging from ultra-low power to power-aware high-performance applications. After a detailed review of prior-art GC-eDRAMs, an analytical retention time distribution model is introduced and validated by silicon measurements, which is key for low-power GC-eDRAM design. The book then investigates supply voltage scaling and near-threshold voltage (NTV) operation of a conventional gain cell (GC), before presenting novel GC circuit and assist techniques for NTV operation, including a 3-transistor full transmission-gate write port, reverse body biasing (RBB), and a replica technique for optimum refresh timing. Next, conventional GC bitcells are evaluated under aggressive technology and voltage scaling (down to the subthreshold domain), before novel bitcells for aggressively scaled CMOS nodes and soft-error tolerance as presented, including a 4-transistor GC with partial internal feedback and a 4-transistor GC with built-in redundancy.
A circuit simulator is a computer program that permits us to see circuit behavior, i.e. circuit voltages and currents, without making the circuit. Use of a circuit simulator is a cheap, efficient, and safe way to study the behavior of circuits. The Toolkit for Interactive Network Analysis (TINA (R)) is a powerful yet affordable SPICE based circuit simulation and PCB design software package for analyzing, designing, and real time testing of analog, digital, VHDL, MCU, and mixed electronic circuits and their PCB layouts. This software was created by DesignSoft. TINA-TI is a spinoff software program that was designed by Texas Instruments (TI (R)) in cooperation with DesignSoft which incorporates a library of pre-made TI components to for the user to utilize in their designs. This book shows how a circuit can be analyzed in the TINA-TI (R) environment. Students of engineering (for instance, electrical, biomedical, mechatronics and robotics to name a few), engineers who work in industry and anyone who want to learn the art of circuit simulation with TINA-TI can benefit from this book. |
You may like...
Handbook of Research on the Role of…
Filipa Brandao, Zelia Breda, …
Hardcover
R7,847
Discovery Miles 78 470
Indian Water Policy at the Crossroads…
Vishal Narain, Annasamy Narayanamoorthy
Hardcover
R3,337
Discovery Miles 33 370
|