![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
Features The first book to unify the lumped-element modelling techniques for various inductively-coupled pulsed accelerator implementations. Discussion of modelling different accelerators in a coherent, rigorous manner, demonstrating the similarities and differences for each type. Authored by authorities in the field.
This book introduces the space community to the novel SpaceFibre protocol, developed under the guidance of the European Space Agency (ESA) as the forthcoming, high speed (Gbps) communication protocol for satellite on-board communication. Since SpaceFibre is expected to follow the success of its predecessor SpaceWire protocol (Mbps), the authors provide a system-level perspective for the end-user willing to adopt this latest technology for future space missions. The authors provide a complete view of the SpaceFibre protocol, together with an analysis of all the necessary hardware and software components to integrate this technology onboard a satellite. The text guides potential system adopters toward understanding the protocol, analyzing strengths, weaknesses and performances. Practical design examples and prototype performance measurements in reference scenarios are also included.
This book describes novel hardware security and microfluidic biochip design methodologies to protect against tampering attacks in cyberphysical microfluidic biochips (CPMBs). It also provides a general overview of this nascent area of research, which will prove to be a vital resource for practitioners in the field.This book shows how hardware-based countermeasures and design innovations can be a simple and effective last line of defense, demonstrating that it is no longer justifiable to ignore security and trust in the design phase of biochips.
This book discusses new possibilities and trends in analog circuit design, including applications in communication, measurement and RF systems. The authors combine the main features for circuit design with actual circuit realizations and demonstrate several performance limitations with example circuits.
This book describes the synthesis of logic functions using memories. It is useful to design field programmable gate arrays (FPGAs) that contain both small-scale memories, called look-up tables (LUTs), and medium-scale memories, called embedded memories. This is a valuable reference for both FPGA system designers and CAD tool developers, concerned with logic synthesis for FPGAs.
This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book's unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.
This book provides an insightful guide to the design, testing and optimization of micro-electrode-dot-array (MEDA) digital microfluidic biochips. The authors focus on the characteristics specific for MEDA biochips, e.g., real-time sensing and advanced microfluidic operations like lamination mixing and droplet shape morphing. Readers will be enabled to enhance the automated design and use of MEDA and to develop a set of solutions to facilitate the full exploitation of design complexities that are possible with standard CMOS fabrication techniques. The book provides the first set of design automation and test techniques for MEDA biochips. The methods described in this book have been validated using fabricated MEDA biochips in the laboratory. Readers will benefit from an in-depth look at the MEDA platform and how to combine microfluidics with software, e.g., applying biomolecular protocols to software-controlled and cyberphysical microfluidic biochips.
This book provides a comprehensive and up-to-date guide to the design of security-hardened, hardware intellectual property (IP). Readers will learn how IP can be threatened, as well as protected, by using means such as hardware obfuscation/camouflaging, watermarking, fingerprinting (PUF), functional locking, remote activation, hidden transmission of data, hardware Trojan detection, protection against hardware Trojan, use of secure element, ultra-lightweight cryptography, and digital rights management. This book serves as a single-source reference to design space exploration of hardware security and IP protection.
The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore's Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising Moore-like exponential growth sustainable through to the 2030s.
This textbook provides an introduction to circuits, systems, and motors for students in electrical engineering as well as other majors that need an introduction to circuits. Unlike most other textbooks that highlight only circuit theory, this book goes into detail on many practical aspects of working with circuits, including electrical safety and the proper method to measure the relevant circuit parameters using modern measurement systems. Coverage also includes a detailed discussion of motors and generators, including brushless DC motors, as these are critical topics in the robotic and mechatronics industries. Lastly, the book discusses A/D and D/A converters given their importance in modern measurement and control systems. In addition to covering the basic circuit concepts, the author also provides the students with the necessary mathematics to analyze correctly the circuit concepts being presented. The chapter on phasor domain circuit analysis begins with a detailed review of complex numbers as many students are weak in this area. Likewise, before discussing filters and Bode Diagrams, the Fourier Transform and later the Laplace Transform are explained.
Very Large-Scale Integration (VLSI) creates an integrated circuit (IC) by combining thousands of transistors into a single chip. While designing a circuit, reduction of power consumption is a great challenge. VLSI designs reduce the size of circuits which eventually reduces the power consumption of the devices. However, it increases the complexity of the digital system. Therefore, computer-aided design tools are introduced into hardware design processes. Unlike the general-purpose computer, an embedded system is engineered to manage a wide range of processing tasks. Single or multiple processing cores manage embedded systems in the form of microcontrollers, digital signal processors, field-programmable gate arrays, and application-specific integrated circuits. Security threats have become a significant issue since most embedded systems lack security even more than personal computers. Many embedded systems hacking tools are readily available on the internet. Hacking in the PDAs and modems is a pervasive example of embedded systems hacking. This book explores the designs of VLSI circuits and embedded systems. These two vast topics are divided into four parts. In the book's first part, the Decision Diagrams (DD) have been covered. DDs have extensively used Computer-Aided Design (CAD) software to synthesize circuits and formal verification. The book's second part mainly covers the design architectures of Multiple-Valued Logic (MVL) Circuits. MVL circuits offer several potential opportunities to improve present VLSI circuit designs. The book's third part deals with Programmable Logic Devices (PLD). PLDs can be programmed to incorporate a complex logic function within a single IC for VLSI circuits and Embedded Systems. The fourth part of the book concentrates on the design architectures of Complex Digital Circuits of Embedded Systems. As a whole, from this book, core researchers, academicians, and students will get the complete picture of VLSI Circuits and Embedded Systems and their applications.
Introducing a new, pioneering approach to integrated circuit design "Nanometer Frequency Synthesis Beyond Phase-Locked Loop" introduces an innovative new way of looking at frequency that promises to open new frontiers in modern integrated circuit (IC) design. While most books on frequency synthesis deal with the phase-locked loop (PLL), this book focuses on the clock signal. It revisits the concept of frequency, solves longstanding problems in on-chip clock generation, and presents a new time-based information processing approach for future chip design. Beginning with the basics, the book explains how clock signal is used in electronic applications and outlines the shortcomings of conventional frequency synthesis techniques for dealing with clock generation problems. It introduces the breakthrough concept of Time-Average-Frequency, presents the Flying-Adder circuit architecture for the implementation of this approach, and reveals a new circuit device, the Digital-to-Frequency Converter (DFC). Lastly, it builds upon these three key components to explain the use of time rather than level to represent information in signal processing. Provocative, inspiring, and chock-full of ideas for future innovations, the book features: A new way of thinking about the fundamental concept of clock frequencyA new circuit architecture for frequency synthesis: the Flying-Adder direct period synthesisA new electronic component: the Digital-to-Frequency ConverterA new information processing approach: time-based vs. level-basedExamples demonstrating the power of this technology to build better, cheaper, and faster systems Written with the intent of showing readers how to think outside the box, "Nanometer Frequency Synthesis Beyond the Phase-Locked Loop" is a must-have resource for IC design engineers and researchers as well as anyone who would like to be at the forefront of modern circuit design.
Implantable devices are a unique area for circuit designers. A comprehensive understanding of design trade-offs at the system level is important to ensure device success. Circuit Design Considerations for Implantable Devices provides knowledge to CMOS circuit designers with limited biomedical background to understand design challenges and trade-offs for implantable devices, especially neural interfacing. Technical topics discussed in the book include: Neural interface Neural sensing amplifiers Electrical stimulation Embedded Signal Analysis Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants Next Generation Neural Interface Electronics
Globalization of the integrated circuit (IC) supply chains led to many potential vulnerabilities. Several attack scenarios can exploit these vulnerabilities to reverse engineer IC designs or to insert malicious trojan circuits. Split manufacturing refers to the process of splitting an IC design into multiple parts and fabricating these parts at two or more foundries such that the design is secure even when some or all of those foundries are potentially untrusted. Realizing its security benefits, researchers have proposed split fabrication methods for 2D, 2.5D, and the emerging 3D ICs. Both attack methods against split designs and defense techniques to thwart those attacks while minimizing overheads have steadily progressed over the past decade. This book presents a comprehensive review of the state-of-the-art and emerging directions in design splitting for secure split fabrication, design recognition and recovery attacks against split designs, and design techniques to defend against those attacks. Readers will learn methodologies for secure and trusted IC design and fabrication using split design methods to protect against supply chain vulnerabilities.
This handbook is inspired by occasional questions from my stu dents and coworkers as to how they can obtain easily the best network functions from which they can complete their filter design projects to satisfy certain criteria. They don't need any help to design the filter. They need only the network function. It appears that this crucial step can be a bottleneck to designers. This handbook is meant to supply the information for those who need a quick answer to a simple question of this kind. There are three most useful basic standard low-pass magnitude characteristics used in filter design. These are the Butterworth, the Chebyshev, and the elliptic characteristics. The Butterworth charac teristic is maximally flat at the origin. The Chebyshev characteristic gives equal-ripple variation in the pass band. The elliptic character istic gives equal-ripple variation in both the pass band and the stop band. The Butterworth and the Chebyshev characteristics are fairly easy to use, and formulas for their parameters are widely available and fairly easy to apply. The theory and derivation of formulas for the elliptic characteristic, however, are much more difficult to handle and understand. This is chiefly because their original development made use of the Jacobian elliptic functions, which are not familiar to most electrical engineers. Although there are several other methods of developing this characteristic, such as the potential analogy, the Chebyshev rational functions, and numerical techniques, most filter designers are as unfamiliar with these methods as they are with the elliptic functions."
This book features selected papers presented at the Fourth International Conference on Nanoelectronics, Circuits and Communication Systems (NCCS 2018). Covering topics such as MEMS and nanoelectronics, wireless communications, optical communications, instrumentation, signal processing, the Internet of Things, image processing, bioengineering, green energy, hybrid vehicles, environmental science, weather forecasting, cloud computing, renewable energy, RFID, CMOS sensors, actuators, transducers, telemetry systems, embedded systems, and sensor network applications in mines, it offers a valuable resource for young scholars, researchers, and academics alike.
This book focuses on control techniques for LCL-type grid-connected inverters to improve system stability, control performance and suppression ability of grid current harmonics. Combining a detailed theoretical analysis with design examples and experimental validations, the book offers an essential reference guide for graduate students and researchers in power electronics, as well as engineers engaged in developing grid-connected inverters for renewable energy generation systems.
Highly Linear Integrated Wideband Amplifiers: Design and Analysis Techniques for Frequencies from Audio to RF deals with the complicated issues involved in the design of high-linearity integrated wideband amplifiers for different operating frequencies. The book demonstrates these principles using a number of high-performance designs. New topologies for high linearity are presented, as well as a novel method for estimating the intermodulation distortion of a wideband signal. One of the most exciting results presented is an enhanced feedback configuration called feedback boosting that is capable of very low distortion. Also important is a statistical method for relating the intermodulation distortion of a wideband signal to the total harmonic distortion (THD) of a single tone. The THD, as opposed to the intermodulation distortion of the wideband signal, is easy to measure and use as a design parameter. Three different applications where high linearity is needed are identified, namely audio power amplifiers, wideband IF amplifiers and RF power amplifiers. For these applications high-performance integrated amplifier designs using novel topologies are presented together with measurement results. The audio amplifiers are built in CMOS and are capable of driving 8Omega loudspeaker loads directly without using any external components. One of the designs can operate on a supply voltage down to 1.5V. Both bipolar and CMOS wideband IF amplifiers are built; they are fully differential and have linearity from DC to 20 MHz. Finally, an RF power amplifier is built in CMOS, without using inductors, in order to investigate what performance can be achieved without them. Highly Linear Integrated Wideband Amplifiers: Design and Analysis Techniques for Frequencies from Audio to RF is an excellent reference for researchers and designers of integrated amplifiers, and may be used as a text for advanced courses on the topic.
This book encapsulates the fundamental quantum processes of importance in the physics and technology of semiconductors in a relatively informal style that has been found to be attractive for graduate courses. This fourth edition is expanded by the addition of new chapters on quantum transport, semi-classical transport and space-charge waves, extending the discussion to statistical, many-particle behaviour in transport phenomena. The author has also taken the opportunity to update other sections. As with previous editions the text restricts its attention to bulk semiconductors. The account traces the path from quantum processes describable by density matrices, through the semi-classical Boltzmann equation and its solutions, to the drift-diffusion description of space-charge waves, the latter appearing in the contexts of negative differential resistance, acoustoelectric and recombination instabilities. Besides being a useful reference for workers in the field, this book will be a valuable text for graduate courses.
This edited volume on "Recent Advances in Renewable Energy" presents a selection of refereed papers presented at the 1st International Conference on Electrical Systems and Automation. The book provides rigorous discussions, the state of the art, and recent developments in the field of renewable energy sources supported by examples and case studies, making it an educational tool for relevant undergraduate and graduate courses. The book will be a valuable reference for beginners, researchers, and professionals interested in renewable energy.
This book is jointly authored by leading academic and industry researchers. The material is unique in that it spans IC interconnect topics ranging from IBM's revolutionary copper process to an in-depth exploration into interconnect-aware computer architectures.
Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance."
This volume concentrates on three topics: mixed analog--digital circuit design, sensor interface circuits and communication circuits. The book comprises six papers on each topic of a tutorial nature aimed at improving the design of analog circuits. The book is divided into three parts. Part I: Mixed Analog--Digital Circuit Design considers the largest growth area in microelectronics. Both standard designs and ASICs have begun integrating analog cells and digital sections on the same chip. The papers cover topics such as groundbounce and supply-line spikes, design methodologies for high-level design and actual mixed analog--digital designs. Part II: Sensor Interface Circuits describes various types of signal conditioning circuits and interfaces for sensors. These include interface solutions for capacitive sensors, sigma--delta modulation used to combine a microprocessor compatible interface with on chip CMOS sensors, injectable sensors and responders, signal conditioning circuits and sensors combined with indirect converters. Part III: Communication Circuits concentrates on systems and implemented circuits for use in personal communication systems. These have applications in cordless telephones and mobile telephone systems for use in cellular networks. A major requirement for these systems is low power consumption, especially when operating in standby mode, so as to maximise the time between battery recharges.
Analog-to-digital (A/D) converters are key components in digital signal processing (DSP) systems and are therefore receiving much attention as DSP becomes increasingly prevalent in telephony, audio, video, consumer products, etc. The varying demands on conversion rate, resolution and other characteristics have inspired a large number of competing A/D conversion techniques. Sigma Delta Modulators: Nonlinear Decoding Algorithms and Stability Analysis is concerned with the particular class of A/D techniques called oversampled noise-shaping (ONS) that has recently come into prominence for a number of applications. The popularity of ONS converters is due to their ease of implementation and robustness to circuit imperfectors. An ONS converter consists of an encoder that generates a high-rate, low-resolution digital signal, and a decoder that produces a low-rate, high-resolution digital approximation to the analog encoder input. The conventional decoding approach is based on linear filtering. Sigma Delta Modulators presents the optimal design of an ONS decoder for a given encoder. It is shown that nonlinear decoding can achieve gains in signaling ratio and the encoder architecture. The book then addresses the instability problem that plagues higher-order ONS encoders. A new stability concept is introduced that is well-suited to ONS encoders, and it is applied to the double-loop encoder as well as to the class of interpolative encoders. It is shown that there exists a trade-off between stability and SNR performance. Based on the results, explicit design examples are presented. Sigma Delta Modulators: Nonlinear Decoding Algorithms and Stability Analysis is a valuable reference source for researchers and engineers in industry and academia working on or interested in design and analysis of A/D converters, particularly to those working in quantization theory and signal reconstruction, and can serve as a text for advanced courses on the subjects treated.
This book presents the latest techniques for the design of antenna, focusing specifically on the microstrip antenna. The authors discuss antenna structure, defected ground, MIMO, and fractal design. The book provides the design of microstrip antenna in terms of latest applications and uses in areas like IoT and device-to-device communication. The book also provides the current methods and techniques used for the enhancement of the performance parameters of the microstrip antenna. Chapters enhance the knowledge and skills of students and researchers in the latest in the communications world like IoT, D2D, satellite, wearable devices etc. The authors discuss applications such as microwave imaging, medical implants, hyperthermia treatments, and wireless wellness monitoring and how a decrease in size of antenna help facilitate application potential. Provides the latest techniques used for the design of antenna in terms of its structure, defected ground, MIMO and fractal design; Outlines steps to resolve issues with designing antenna, including the latest design and design parameters for microstrip antenna; Presents the design of conformal and miniaturized antenna structures for various applications. |
You may like...
Simulation Methods for ESD Protection…
Harald Gossner, Kai Esmark, …
Hardcover
R4,190
Discovery Miles 41 900
Gyrators, Simulated Inductors and…
Raj Senani, Data Ram Bhaskar, …
Hardcover
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
|