![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Circuits & components
What you'll find here is a fascinating compendium of fundamental problem formulations of analog design centering and sizing. This essential work provides a differentiated knowledge about the tasks of analog design centering and sizing. In particular, worst-case scenarios are formulated and analyzed. This work is right at the crossing point between process and design technology, and is both reference work and textbook for understanding CAD methods in analog sizing.
This book presents 50 selected peer-reviewed reports from the 2016 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2016 (Surabaya, Indonesia, 19-22 July, 2016). The Proceedings are devoted to processing techniques, physics, mechanics, and applications of advanced materials. As such, they examine a wide spectrum of nanostructures, ferroelectric crystals, materials and composites, as well as other promising materials with special properties. They present nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques, and physical and mechanical studies of the structural and physical-mechanical properties of the materials discussed. Further, a broad range of original mathematical and numerical methods is applied to solve various technological, mechanical and physical problems, which are inte resting for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc., which show improved characteristics, defined by the developed materials and composites, opening new possibilities to study different physico-mechanical processes and phenomena.
Advances in Highly Correlated Systems explores the fundamentals, recent advances, and applications of the physics of highly correlated materials. This book serves as a handbook/reference for advanced graduate students. • Provides fascinating insights into the major developments and applications of strongly correlated materials. • Integrates various numerical/theoretical models, such as dynamic mean-field theory, Hubbard model, Ab-Initio Calculation etc. • Encompasses a useful experimental and theoretical basis for students, researchers, and scientists.
This book is a compilation and a collection of tutorials and recent advances in the use of nullors (combinations of nullators and norators) and pathological mirrors in analog circuit and system design. It highlights the basic theory, trends and challenges in the field, making it an excellent reference resource for researchers and designers working in the synthesis, analysis, and design of analog integrated circuits. With its tutorial character, it can also be used for teaching. Singular elements such as nullors and pathological mirrors can arguably be considered as universal blocks since they can represent all existing analog building blocks, and they allow complex integrated circuits to be designed simply and effectively. These pathological elements are now used in a wide range of applications in modern circuit/system theory, and also in design practice.
The history of this book begins way back in 1982. At that time a research proposal was filed with the Dutch Foundation for Fundamental Research on Matter concerning research to model defects in the layer structure of integrated circuits. It was projected that the results may be useful for yield estimates, fault statistics and for the design of fault tolerant structures. The reviewers were not in favor of this proposal and it disappeared in the drawers. Shortly afterwards some microelectronics industries realized that their survival may depend on a better integration between technology-and design-laboratories. For years the "silicon foundry" concept had suggested a fairly rigorous separation between the two areas. The expectation was that many small design companies would share the investment into the extremely costful Silicon fabrication plants while designing large lots of application-specific integrated circuits (ASIC's). Those fabrication plants would be concentrated with only a few market leaders.
This book explains the application of recent advances in computational intelligence - algorithms, design methodologies, and synthesis techniques - to the design of integrated circuits and systems. It highlights new biasing and sizing approaches and optimization techniques and their application to the design of high-performance digital, VLSI, radio-frequency, and mixed-signal circuits and systems. This first of two related volumes addresses the design of analog and mixed-signal (AMS) and radio-frequency (RF) circuits, with 17 chapters grouped into parts on analog and mixed-signal applications, and radio-frequency design. It will be of interest to practitioners and researchers in computer science and electronics engineering engaged with the design of electronic circuits.
This book provides anyone needing a primer on random signals and processes with a highly accessible introduction to these topics. It assumes a minimal amount of mathematical background and focuses on concepts, related terms and interesting applications to a variety of fields. All of this is motivated by numerous examples implemented with MATLAB, as well as a variety of exercises at the end of each chapter."
System Level Design of Reconfigurable Systems-on-Chip provides insight in the challenges and difficulties encountered during the design of reconfigurable Systems-on-Chip (SoCs). Reconfiguration is becoming an important part of System-on-Chip design to cope with the increasing demands for simultaneous flexibility and computational power. The book focuses on system level design issues for reconfigurable SoCs, and provides information on reconfiguration aspects of complex SoCs and how they can be implemented in practice. It is divided in three parts. The first part provides background information and requirements on reconfigurable technologies and systems. The second one identifies existing methodological gaps, and introduces a design flow for developing reconfigurable Systems-on-Chip. The high level part of the design flow can be covered by two C++ based methodologies: one based on SystemC and one based on OCAPI-XL, both including appropriate extensions to handle reconfiguration issues. Finally, the third part of the book presents reconfigurable SoCs from the perspective of the designer, through three indicative case studies from the wireless and multimedia communication domain.
A landmark text in LMS filter technology–– from the field’s leading authorities In the field of electrical engineering and signal processing, few algorithms have proven as adaptable as the least-mean-square (LMS) algorithm. Devised by Bernard Widrow and M. Hoff, this simple yet effective algorithm now represents the cornerstone for the design of adaptive transversal (tapped-delay-line) filters. Today, working efficiently with LMS adaptive filters not only involves understanding their fundamentals, it also means staying current with their many applications in practical systems. However, no single resource has presented an up-to-the-minute examination of these and all other essential aspects of LMS filters–until now. Edited by Simon Haykin and Bernard Widrow, the original inventor of the technology, Least-Mean-Square Adaptive Filters offers the most definitive look at the LMS filter available anywhere. Here, readers will get a commanding perspective on the desirable properties that have made LMS filters the turnkey technology for adaptive signal processing. Just as importantly, Least-Mean-Square Adaptive Filters brings together the contributions of renowned experts whose insights reflect the state-of-the-art of the field today. In each chapter, the book presents the latest thinking on a wide range of vital, fast-emerging topics, including:
As the editors point out, there is no direct mathematical theory for the stability and steady-state performance of the LMS filter. But it is possible to chart its behavior in a stationary and nonstationary environment. Least-Mean-Square Adaptive Filters puts these defining characteristics into sharp focus, and–more than any other source–brings you up to speed on everything that the LMS filter has to offer.
This book highlights the growing applications of THz technology and various modules used for their successful realization. The enormous advantages of THz devices like higher resolution, spatial directivity, high-speed communication, greater bandwidth, non-ionizing signal nature and compactness make them useful in various applications like communication, sensing, security, safety, spectroscopy, manufacturing, bio-medical, agriculture, imaging, etc. Since the THz radiation covers frequencies from 0.1THz to around 10THz and highly attenuated by atmospheric gases, they are used in short-distance applications only. The book focuses on recent advances and different research issues in terahertz technology and presents theoretical, methodological, well-established and validated empirical works dealing with the different topics.
Most emerging applications in imaging and machine learning must perform immense amounts of computation while holding to strict limits on energy and power. To meet these goals, architects are building increasingly specialized compute engines tailored for these specific tasks. The resulting computer systems are heterogeneous, containing multiple processing cores with wildly different execution models. Unfortunately, the cost of producing this specialized hardware-and the software to control it-is astronomical. Moreover, the task of porting algorithms to these heterogeneous machines typically requires that the algorithm be partitioned across the machine and rewritten for each specific architecture, which is time consuming and prone to error. Over the last several years, the authors have approached this problem using domain-specific languages (DSLs): high-level programming languages customized for specific domains, such as database manipulation, machine learning, or image processing. By giving up generality, these languages are able to provide high-level abstractions to the developer while producing high-performance output. The purpose of this book is to spur the adoption and the creation of domain-specific languages, especially for the task of creating hardware designs. In the first chapter, a short historical journey explains the forces driving computer architecture today. Chapter 2 describes the various methods for producing designs for accelerators, outlining the push for more abstraction and the tools that enable designers to work at a higher conceptual level. From there, Chapter 3 provides a brief introduction to image processing algorithms and hardware design patterns for implementing them. Chapters 4 and 5 describe and compare Darkroom and Halide, two domain-specific languages created for image processing that produce high-performance designs for both FPGAs and CPUs from the same source code, enabling rapid design cycles and quick porting of algorithms. The final section describes how the DSL approach also simplifies the problem of interfacing between application code and the accelerator by generating the driver stack in addition to the accelerator configuration. This book should serve as a useful introduction to domain-specialized computing for computer architecture students and as a primer on domain-specific languages and image processing hardware for those with more experience in the field.
This book provides a unified overview of network-on-chip router micro-architecture, the corresponding design opportunities and challenges, and existing solutions to overcome these challenges. The discussion focuses on the heart of a NoC, the NoC router, and how it interacts with the rest of the system. Coverage includes both basic and advanced design techniques that cover the entire router design space including router organization, flow control, pipelined operation, buffering architectures, as well as allocators' structure and algorithms. Router micro-architectural options are presented in a step-by-step manner beginning from the basic design principles. Even highly sophisticated design alternatives are categorized and broken down to simpler pieces that can be understood easily and analyzed. This book is an invaluable reference for system, architecture, circuit, and EDA researchers and developers, who are interested in understanding the overall picture of NoC routers' architecture, the associated design challenges, and the available solutions.
A comprehensive introduction to hardware and circuit design for wireless systems RF and Microwave Circuit and Component Design for Wireless Systems describes the general hardware components and circuits, design methods, system parameters, and architectures for RF and microwave applications. It features a wealth of practical examples primarily in communication systems, though this material can also be applied to other wireless applications. The authors provide expert coverage of technical issues for engineers and technicians working in the areas of RF, microwaves, communications, solid-state devices, and radar systems. They cover general wireless systems and the devices and circuit technologies at work in them, as well as:
With the inclusion of figures, tables, curves, and a multitude of design examples, RF and Microwave Circuit and Component Design for Wireless Systems serves as a comprehensive reference for practitioners and a detailed introductory text for graduate students.
Updated to integrated modular avionics, and cabin and aircraft information systems Ideal for students gaining EASA Part 66 licences, particularly the B1 or B2 licence One of Routledge's core aircraft maintenance titles.
A step-by-step guide to the design and analysis of CMOS operational amplifiers and comparators This volume is a comprehensive text that offers a detailed treatment of the analysis and design principles of two of the most important components of analog metal oxide semiconductor (MOS) circuits, namely operational amplifiers (op-amps) and comparators. The book covers the physical operation of these components, their design procedures, and applications to analog MOS circuits—particularly those involving switched-capacitor circuits, and analog-to-digital (A/D) and digital-to-analog (D/A) converters. Roubik Gregorian, a leading authority in the field, gives circuit designers the technical knowledge they need to design high-performance op-amps and comparators suitable for most analog circuit applications. In this self-contained treatment, which is loosely based on his well-received 1986 book, Analog MOS Integrated Circuits for Signal Processing (coauthored with Gabor C. Temes), Gregorian reviews the required basics before advancing to state-of-the-art topics and problem-solving techniques. This valuable guide:
Introduction to CMOS Op-Amps and Comparators is invaluable for analog and mixed-signal designers, for senior and graduate students in electrical engineering, and for anyone who would like to keep up with this essential technology.
This book is the first to explain FinFET modeling for IC
simulation and the industry standard for FinFET modeling BSIM-CMG.
It gives a foundation on the physics and operation of FinFET,
explaining the need to go from planar to 3D architecture. It then
covers detailed aspects of the BSIMCMG model such as surface
potential, charge and current calculations. A dedicated chapter on
parameter extraction procedures provides a step-by-step approach
for the efficient extraction of model parameters. This book is an
indispensible reference and handbook for device and modeling
engineers, circuit designers and students. With this book you will
learn: Why you should use FinFET The physics and operation of
FinFET Details of the FinFET standard model (BSIM-CMG) Parameter
extraction in BSIM-CMG FinFET circuit design and simulation
Filters are essential subsystems in a huge variety of electronic
systems. Filter applications This textbook introduces basic concepts and methods and the
associated mathematical and computational tools employed in
electronic filter theory, synthesis and design. This book can be
used as an integral part of undergraduate courses on analog
electronic filters.Includes numerous, solved examples, applied
examples and exercises for each chapter.Includes detailed coverage
of active and passive filters in an independent but correlated
manner.Emphasizes real filter design from the outset.Uses a
rigorous but simplified approach to theoretical concepts and
reinforces understanding through real design examples.Presents
necessary theoretical background and mathematical formulations for
the design of passive and active filters in a natural manner that
makes the use of standard tables and nomographs unnecessary and
superfluous even in the most mystifiying case of elliptic
filters.Uses a step-by-step presentation for all filter design
procedures and demonstrates these in numerous example
applications.
Advanced DPA Theory and Practice provides a thorough survey of new physical leakages of embedded systems, namely the power and the electromagnetic emanations. The book presents a thorough analysis about leakage origin of embedded system. This book examines the systematic approach of the different aspects and advanced details about experimental setup for electromagnetic attack. The author discusses advanced statistical methods to successfully attack embedded devices such as high-order attack, template attack in principal subspaces, machine learning methods. The book includes theoretical framework to define side-channel based on two metrics: mutual information and success rate.
This book equips readers with tools for computer architecture of high performance, low power, and high reliability memory hierarchy in computer systems based on emerging memory technologies, such as STTRAM, PCM, FBDRAM, etc. The techniques described offer advantages of high density, near-zero static power, and immunity to soft errors, which have the potential of overcoming the "memory wall." The authors discuss memory design from various perspectives: emerging memory technologies are employed in the memory hierarchy with novel architecture modification; hybrid memory structure is introduced to leverage advantages from multiple memory technologies; an analytical model named "Moguls" is introduced to explore quantitatively the optimization design of a memory hierarchy; finally, the vulnerability of the CMPs to radiation-based soft errors is improved by replacing different levels of on-chip memory with STT-RAMs.
This book is designed both for FPGA users interested in developing new, specific components - generally for reducing execution times -and IP core designers interested in extending their catalog of specific components. The main focus is circuit synthesis and the discussion shows, for example, how a given algorithm executing some complex function can be translated to a synthesizable circuit description, as well as which are the best choices the designer can make to reduce the circuit cost, latency, or power consumption. This is not a book on algorithms. It is a book that shows how to translate efficiently an algorithm to a circuit, using techniques such as parallelism, pipeline, loop unrolling, and others. Numerous examples of FPGA implementation are described throughout this book and the circuits are modeled in VHDL. Complete and synthesizable source files are available for download."
A vital tool for researchers, engineers, and students, New Sensors and Processing Chain focuses on the processing chain to set up in order to extract relevant information on various systems. Highlighting the design of new microsensors and various applications, the authors present recent progress in instrumentation and microsystem design, providing insight to the modification of the sensor itself as well as its environment. Various applications illustrate the presentations, which show how a processing chain is organized from the data acquired by a specific sensor.
This book focuses on the theory and application of power switching components in power networks. More specifically, it discusses current interruption theory, applied stresses to switching components in power networks and appropriate methods to test their different functionalities. It reviews the basic working principles of current technologies and summarizes the upcoming technological advances within the field of power switching devices. Taking an educational approach to the subject, this book is useful for graduate courses on high voltage equipment and power device technology within the electric power engineering discipline. Furthermore, inclusion of numerous worked examples, exercises and easily digestible descriptions of complex physical phenomena in switching devices make this an invaluable self-learning resource for engineers.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
This textbook covers the fundamental concepts of analog communications with a Q&A approach. It is a comprehensive compilation of numerical problems and solutions covering all the topics in analog communications. Richly illustrated with figures, this book covers the important topics of signals and systems, random variables and random processes, amplitude modulation, frequency modulation, pulse code modulation and noise in analog modulation. It has numerical questions and their solutions clearing the concepts of Fourier transform, Hilbert transform, modulation, synchronization, signal-to-noise ratio analysis and many more. All the solutions have step-by-step approach for easy understanding. This book will be of great interest to the students of electronics and electrical communications engineering. |
You may like...
Handbook of Research on Writing and…
Elizabeth A. Monske, Kristine L. Blair
Hardcover
R6,789
Discovery Miles 67 890
Developing Curriculum for Emergency…
Susana Silva, Paula Peres, …
Hardcover
R5,370
Discovery Miles 53 700
Pedagogical and Andragogical Teaching…
Victor C. X. Wang, Lesley Farmer, …
Hardcover
R4,899
Discovery Miles 48 990
Quality in Online Programs - Approaches…
Swapna Kumar, Patricia Arnold
Paperback
R1,391
Discovery Miles 13 910
Green IT Engineering: Social, Business…
Vyacheslav Kharchenko, Yuriy Kondratenko, …
Hardcover
R4,127
Discovery Miles 41 270
Coordination of Internet Agents…
Andrea Omicini, Franco Zambonelli, …
Hardcover
Emerging Technologies for Semantic Work…
Jorg Rech, Bjorn Decker, …
Hardcover
R4,591
Discovery Miles 45 910
|