![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
This textbook provides a comprehensive description of a variety of vibration and acoustic pickups and exciters, as well as strain gauge transducers. It is an exhaustive manual for setting up basic and involved experiments in the areas of vibration, acoustics and strain measurement (using strain gauges only). It further serves as a reference to conduct experiments of a pedagogical nature in these areas. It covers the various theoretical aspects of experimental test rigs, as well as a description and choice of transducers/equipment. The fundamentals of signal processing theory, including the basics of random signals, have been included to enable the user to make a proper choice of settings on an analyser or measuring equipment. Also added is a description of modal analysis theory and related parameter extraction techniques. All chapters are provided with conceptual questions which will provoke the reader to think and gain a better understanding of the subjects. The textbook illustrates around fifty experiments in the areas of vibration, acoustics and strain measurements. Given the contents, this textbook is useful for undergraduate and postgraduate students in the areas of mechanical engineering, with applications that range from civil structures, architectural and environmental systems, and all forms of mechanical systems including transport vehicles and aircraft.
This book provides a detailed history of the United States National Committee on Theoretical and Applied Mechanics (USNC/TAM) of the US National Academies, the relationship between the USNC/TAM and IUTAM, and a review of the many mechanicians who developed the field over time. It emphasizes the birth and growth of USNC/TAM, the birth and growth of the larger International Union of Theoretical and Applied Mechanics (IUTAM), and explores the work of mechanics from Aristotle to the present. Written by the former Secretary of USNC/TAM, Dr. Carl T. Herakovich of the University of Virginia, the book profiles luminaries of mechanics including Galileo, Newton, Bernoulli, Euler, Cauchy, Prandtl, Einstein, von Karman, Timoshenko, and in so doing provides insight into centuries of scientific and technologic advance.
Higher dimensional theories have attracted much attention because
they make it possible to reduce much of physics in a concise,
elegant fashion that unifies the two great theories of the 20th
century: Quantum Theory and Relativity. This book provides an
elementary description of quantum wave equations in higher
dimensions at an advanced level so as to put all current
mathematical and physical concepts and techniques at the reader's
disposal. A comprehensive description of quantum wave equations in
higher dimensions and their broad range of applications in quantum
mechanics is provided, which complements the traditional coverage
found in the existing quantum mechanics textbooks and gives
scientists a fresh outlook on quantum systems in all branches of
physics.
Presenting current knowledge in the field of mudflows, this book
includes both rheological mudflow aspects, and information on
mudflow characteristics in open channels. It includes sections on:
This book examines how the state of underground structures can be determined with the assistance of force, deformation and energy. It then analyzes mechanized shield methods, the New Austrian tunneling method (NATM) and conventional methods from this new perspective. The book gathers a wealth of cases reflecting the experiences of practitioners and administrators alike. Based on statistical and engineering studies of these cases, as well as lab and field experiments, it develops a stability assessment approach incorporating a stable equilibrium, which enables engineers to keep the structure and surrounding rocks safe as long as the stable equilibrium and deformation compliance are maintained. The book illustrates the implementation of the method in various tunneling contexts, including soil-rock mixed strata, tunneling beneath operating roads, underwater tunnels, and tunnel pit excavation. It offers a valuable guide for researchers, designers and engineers, especially those who are seeking to understand the underlying principles of underground excavation.
The current popular and scientific interest in virtual environments has provided a new impetus for investigating binaural and spatial hearing. However, the many intriguing phenomena of spatial hearing have long made it an exciting area of scientific inquiry. Psychophysical and physiological investigations of spatial hearing seem to be converging on common explanations of underlying mechanisms. These understandings have in turn been incorporated into sophisticated yet mathematically tractable models of binaural interaction. Thus, binaural and spatial hearing is one of the few areas in which professionals are soon likely to find adequate physiological explanations of complex psychological phenomena that can be reasonably and usefully approximated by mathematical and physical models. This volume grew out of the Conference on Binaural and Spatial Hearing, a four-day event held at Wright-Patterson Air Force Base in response to rapid developments in binaural and spatial hearing research and technology. Meant to be more than just a proceedings, it presents chapters that are longer than typical proceedings papers and contain considerably more review material, including extensive bibliographies in many cases. Arranged into topical sections, the chapters represent major thrusts in the recent literature. The authors of the first chapter in each section have been encouraged to take a broad perspective and review the current state of literature. Subsequent chapters in each section tend to be somewhat more narrowly focused, and often emphasize the authors' own work. Thus, each section provides overview, background, and current research on a particular topic. This book is significant in that it reviews the important work during the past 10 to 15 years, and provides greater breadth and depth than most of the previous works.
Caustics, Catastrophes and Wave Fields in a sense continues the treatment of the earlier volume 6 "Geometrical Optics of Inhomogeneous Media" in the present book series, by analysing caustics and their fields on the basis of modern catastrophe theory. This volume covers the key generalisations of geometrical optics related to caustic asymptotic expansions: The Lewis-Kravtsov method of standard functions, Maslov's method of caonical operators, Orlov's method of interference integrals, as well as their modifications for penumbra, space-time, random and other types of caustics. All the methods are amply illustrated by worked problems concerning relevant wave-field applications.
This volume contains the proceedings of the Workshop Energy Methods for Free Boundary Problems in Continuum Mechanics, held in Oviedo, Spain, from March 21 to March 23, 1994. It is well known that the conservation laws and the constitutive equations of Continuum Mechanics lead to complicated coupled systems of partial differential equations to which, as a rule, one fails to apply the techniques usually employed in the studies of scalar uncoupled equations such as, for instance, the maximum principle. The study of the qualitative behaviour of solutions of the systems re quires different techniques, among others, the so called, Energy Methods where the properties of some integral of a nonnegative function of one or several unknowns allow one to arrive at important conclusions on the envolved unknowns. This vol ume presents the state of the art in such a technique. A special attention is paid to the class of Free Boundary Problems. The organizers are pleased to thank the European Science Foundation (Pro gram on Mathematical treatment of free boundary problems), the DGICYT (Spain), the FICYT (Principado de Asturias, Spain) and the Universities of Oviedo and Complutense de Madrid for their generous financial support. Finally, we wish to thank Kluwer Academic Publishers for the facilities received for the publication of these Proceedings."
Substantial new breakthroughs are happening in telecommunications technology. This volume presents a state-of-the-art review of the current research activities in intelligent network technology. It contains the proceedings of a workshop on intelligent networks organized by the International Federation of Information Processsing and held as part of the Third Summer School on Telecommunications in Lappeenranta, Finland, August 1994.
Signal Processing for Computer Vision is a unique and thorough treatment of the signal processing aspects of filters and operators for low-level computer vision. Computer vision has progressed considerably over recent years. From methods only applicable to simple images, it has developed to deal with increasingly complex scenes, volumes and time sequences. A substantial part of this book deals with the problem of designing models that can be used for several purposes within computer vision. These partial models have some general properties of invariance generation and generality in model generation. Signal Processing for Computer Vision is the first book to give a unified treatment of representation and filtering of higher order data, such as vectors and tensors in multidimensional space. Included is a systematic organisation for the implementation of complex models in a hierarchical modular structure and novel material on adaptive filtering using tensor data representation. Signal Processing for Computer Vision is intended for final year undergraduate and graduate students as well as engineers and researchers in the field of computer vision and image processing.
Since 1968, the International Acoustical Imaging Symposium has provided a unique forum for advanced research, promoting the sharing of technology, developments, methods and theory among all areas of acoustics. Volume 28 of the Proceedings offers an excellent collection of papers presented in six major categories, offering both a broad perspective on the state of the art in the field as well as an in-depth look at its leading edge research.
This book is concerned with the prediction of thermodynamic and transport properties of gases and liquids. The prediction of such properties is essential for the solution of many problems encountered in chemical and process engineering as well as in other areas of science and technology. The book aims to present the best of those modern methods which are capable of practical application. It begins with basic scientific principles and formal results which are subsequently developed into practical methods of prediction. Numerous examples, supported by a suite of computer programmes, illustrate applications of the methods. The book is aimed primarily at the student market (for both undergraduate and taught postgraduate courses) but it will also be useful for those engaged in research and for chemical and process engineering professionals.
A knowledge of the mechanical behaviour of both naturally occurring materials, such as soils and rocks, and artificial materials such as concrete and industrial granular matter, is of fundamental importance to their proper use in engineering and scientific applications. This volume contains selected lectures by international experts on current developments and problems in the numerical modelling of cohesive-frictional materials which provide a deeper understanding of the microscopic and macroscopic description of such materials. This book fills a gap by emphasizing the cross-fertilization of ideas between engineers and scientists engaged in this exciting field of research.
The thesis tackles two distinct problems of great interest in gravitational mechanics - one relativistic and one Newtonian. The relativistic one is concerned with the "first law of binary mechanics", a remarkably simple variational relation that plays a crucial role in the modern understanding of the gravitational two-body problem, thereby contributing to the effort to detect gravitational-wave signals from binary systems of black holes and neutron stars. The work reported in the thesis provides a mathematically elegant extension of previous results to compact objects that carry spin angular momentum and quadrupolar deformations, which more accurately represent astrophysical bodies than mere point particles. The Newtonian problem is concerned with the isochrone problem of celestial mechanics, namely the determination of the set of radial potentials whose bounded orbits have a radial period independent of the angular momentum. The thesis solves this problem completely in a geometrical way and explores its consequence on a variety of levels, in particular with a complete characterisation of isochrone orbits. The thesis is exceptional in the breadth of its scope and achievements. It is clearly and eloquently written, makes excellent use of images, provides careful explanations of the concepts and calculations, and it conveys the author's personality in a way that is rare in scientific writing, while never sacrificing academic rigor.
Flow induced vibration and noise (FIVN) remains a critical research topic. Even after over 50 years of intensive research, accurate and cost-effective FIVN simulation and measurement techniques remain elusive. This book gathers the latest research from some of the most prominent experts in the field. It describes methods for characterizing wall pressure fluctuations, including subsonic and supersonic turbulent boundary layer flows over smooth and rough surfaces using computational methods like Large Eddy Simulation; for inferring wall pressure fluctuations using inverse techniques based on panel vibrations or holographic pressure sensor arrays; for calculating the resulting structural vibrations and radiated sound using traditional finite element methods, as well as advanced methods like Energy Finite Elements; for using scaling approaches to universally collapse flow-excited vibration and noise spectra; and for computing time histories of structural response, including alternating stresses. This book presents the proceedings of the First International Workshop on Flow Induced Noise and Vibration (FLINOVIA), which was held in Rome, Italy, in November 2013. The authors' backgrounds represent a mix of academia, government, and industry, and several papers include applications to important problems for underwater vehicles, aerospace structures and commercial transportation. The book offers a valuable reference guide for all those working in the area of flow-induced vibration and noise.
Rhythms animate our lives and the worlds we inhabit. Rhythms of getting things done, of working technologies, of day and night and the seasons, and of shared patterns of work, home-life and moving around. Rhythms are also intrinsically about flows of energy - heat, light, motion - from the smallest movements of muscles, to the petrol-fuelled rhythms of the rush hour, the spinning of wind turbines and shifting cycles of solar radiation. This book sets out to energise Lefebvre's rhythmanalysis in order to develop a novel and far reaching polyrhythmic conceptualisation of the beats and pulses of our relations with energy in both its natural and technological forms. Social theory, thermodynamic thinking and diverse streams of energy-oriented research are brought together to trace how the climate crisis has the rhythmic patterning of big power energy systems at its core; and how transitioning to a just, low carbon future means transforming energy systems and our everyday dependencies on them into new rhythmic patterns and interrelations.
A few years ago the Helmholtz Association (HGF) consisting of 15 research Institutions including the German Aerospace Center (DLR) started a network research program called 'Virtual Institutes'. The basic idea of this program was to establish research groups formed by Helmholtz research centers and universities to study and develop methods or technologies for future applications and educate young scientists. It should also enable and encourage the partners of this Virtual Institute after 3 years funding to continue their cooperation in other programs. Following this HGF request and chance the DLR Windtunnel Department of the Institute of Aerodynamics and Flow Technology took the initiative and established a network with other DLR institutes and German u- versities RWTH Aachen, University of Stuttgart and Technical University Munich. The main goal of this network was to share the experience in system analysis, ae- dynamics and material science for aerospace for improving the understanding and applicability of some key technologies for future reusable space transportation s- tems. Therefore, the virtual institute was named RESPACE (Key Technologies for Re- Usable Space Systems). |
![]() ![]() You may like...
Foundations of the Mind, Brain, and…
Jahangir Moini, Anthony Logalbo, …
Paperback
R5,546
Discovery Miles 55 460
Effects of Peri-Adolescent Licit and…
Richard L. Bell, Shafiqurrahman
Hardcover
Designing Presence - Entering Towards…
Jorge Crecis, Bridget Lappin
Hardcover
R3,717
Discovery Miles 37 170
Imagining the Brain: Episodes in the…
Chiara Ambrosio, William Maclehose
Hardcover
R6,579
Discovery Miles 65 790
|