![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics
The #1 New York Times bestselling author of What If? and How To answers more of the weirdest questions you never thought to ask. The millions of people around the world who read and loved What If? still have questions, and those questions are getting stranger. Thank goodness xkcd creator Randall Munroe is here to help. Planning to ride a fire pole from the Moon back to Earth? The hardest part is sticking the landing. Hoping to cool the atmosphere by opening everyone’s freezer door at the same time? Maybe it’s time for a brief introduction to thermodynamics. Want to know what would happen if you rode a helicopter blade, built a billion-story building, made a lava lamp out of lava, or jumped on a geyser as it erupted? Okay, if you insist. Before you go on a cosmic road trip, feed the residents of New York City to a T. rex, or fill every church with bananas, be sure to consult this practical guide for impractical ideas. Unfazed by absurdity, Munroe consults the latest research on everything from swing-set physics to airliner catapult–design to answer his readers’ questions, clearly and concisely, with illuminating and occasionally terrifying illustrations. As he consistently demonstrates, you can learn a lot from examining how the world might work in very specific extreme circumstances.
Written for an interdisciplinary readership of physicists, engineers, and chemists, this book is a practical guide to the fascinating world of solitons. These waves of large amplitude propagate over long distances without dispersing and therefore show one of the most striking aspects of nonlinearity. The author addresses students, practitioners, and researchers, approaching the subject from the standpoint of applications in optics, hydrodynamics, and electrical and chemical engineering. The book also encourages readers to perform their own experiments. Since the printing of the second edition of this book, there has been a large growth in the literature on nonlinear waves and so has the wide applicability of the subject to the physical, chemical and biological sciences. This third edition has been thoroughly revised. Some of the topics are brought up to date with pertinent references. Furthermore, the book now includes a completely new chapter on solitary waves in diffuse systems.
This textbook provides a comprehensive description of a variety of vibration and acoustic pickups and exciters, as well as strain gauge transducers. It is an exhaustive manual for setting up basic and involved experiments in the areas of vibration, acoustics and strain measurement (using strain gauges only). It further serves as a reference to conduct experiments of a pedagogical nature in these areas. It covers the various theoretical aspects of experimental test rigs, as well as a description and choice of transducers/equipment. The fundamentals of signal processing theory, including the basics of random signals, have been included to enable the user to make a proper choice of settings on an analyser or measuring equipment. Also added is a description of modal analysis theory and related parameter extraction techniques. All chapters are provided with conceptual questions which will provoke the reader to think and gain a better understanding of the subjects. The textbook illustrates around fifty experiments in the areas of vibration, acoustics and strain measurements. Given the contents, this textbook is useful for undergraduate and postgraduate students in the areas of mechanical engineering, with applications that range from civil structures, architectural and environmental systems, and all forms of mechanical systems including transport vehicles and aircraft.
The aim of this book is to impart a sound understanding, both physical and mathematical, of the fundamental theory of vibration and its applications. The book presents in a simple and systematic manner techniques that can easily be applied to the analysis of vibration of mechanical and structural systems. Unlike other texts on vibrations, the approach is general, based on the conservation of energy and Lagrangian dynamics, and develops specific techniques from these foundations in clearly understandable stages. Suitable for a one-semester course on vibrations, the book presents new concepts in simple terms and explains procedures for solving problems in considerable detail.
This technical book considers the application side of LDA techniques. Starting from the basic theories that are crucial for each LDA user, the main subject of the book is focused on diverse application methods. In details, it deals with universal methodical techniques that have been mostly developed in the last 15 years. The book thus gives for the first time an application reference for LDA users in improving the optical conditions and enhancing the measurement accuracies. It also provides the guidelines for simplifying the measurements and correcting measurement errors as well as for clarifying the application limits and extending the application areas of LDA techniques. Beside the treatments of some traditional optical and flow mechanical features influencing the measurement accuracies, the book shows a broad spectrum of LDA application methods in the manner of measuring the flow turbulence, resolving the secondary flow structures, and quantifying the optical aberrations at measurements of internal flows etc.. Thus, it also supports the further developments of both the hard- and software of LDA instrumentations.
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.
This open access book provides a view into the state-of-the-art research on aviation noise and related annoyance. The book will primarily focus on the achievements of the ANIMA project (Aviation Noise Impact Management through Novel Approaches), but not exclusively. The content has a broader theme in order to encompass. regulation issues, the ICAO (International Civil Aviation Organization) balanced approach, progresses made on technologies and reduction of noise at source, impact of possible future civil supersonic aircraft, land-use planning issues, as well as the core topics of the ANIMA project, i.e. impact on human beings, annoyance, quality of life, health and findings of the project in this respect. This book differs from traditional research programmes on aviation noise as the authors endeavour, not to lower noise at source, but to reduce the annoyance. This book examines these non-acoustic factors in an effort to help those most affected by aviation noise - communities living close to airports, and also help airport managers, policy-makers, local authorities and researchers to deal with this issue holistically. The book concludes with some recommendations for EU, national and local policy-makers, airport and aviation authorities, and more broadly a scientifically literate audience. These recommendations may help to identify gaps for progress in terms of research but also genuine implementation actions for political and regulatory authorities.
Dynamics of Ice Sheets and Glaciers presents an introduction to the dynamics and thermodynamics of flowing ice masses on Earth. Based on an outline of general continuum mechanics, the different initial-boundary-value problems for the flow of ice sheets, ice shelves, ice caps and glaciers are systematically derived. Special emphasis is put on developing hierarchies of approximations for the different systems, and suitable numerical solution techniques are discussed. A separate chapter is devoted to glacial isostasy. The book is appropriate for graduate courses in glaciology, cryospheric sciences, environmental sciences, geophysics and related fields. Standard undergraduate knowledge of mathematics (calculus, linear algebra) and physics (classical mechanics, thermodynamics) provide a sufficient background for successfully studying the text.
This book deals with an original contribution to the hypothetical missing link unifying the two fundamental branches of physics born in the twentieth century, General Relativity and Quantum Mechanics. Namely, the book is devoted to a review of a "covariant approach" to Quantum Mechanics, along with several improvements and new results with respect to the previous related literature. The first part of the book deals with a covariant formulation of Galilean Classical Mechanics, which stands as a suitable background for covariant Quantum Mechanics. The second part deals with an introduction to covariant Quantum Mechanics. Further, in order to show how the presented covariant approach works in the framework of standard Classical Mechanics and standard Quantum Mechanics, the third part provides a detailed analysis of the standard Galilean space-time, along with three dynamical classical and quantum examples. The appendix accounts for several non-standard mathematical methods widely used in the body of the book.
This concise textbook develops step by step the fundamental principles of continuum mechanics. Emphasis is on mathematical clarity, and an extended appendix provides the required background knowledge in linear algebra and tensor calculus. After introducing the basic notions about general kinematics, balance equations, material objectivity and constitutive functions, the book turns to the presentation of rational thermodynamics by stressing the role of Lagrange multipliers in deriving constitutive funcitions from the underlying entropy principle. A brief lecture on extended thermodynamics closes the book. Many examples and exercises round off the material presented in the chapters. The book addresses primarily advanced undergraduate students in theoretical physics, applied mathematics and materials sciences.
Crystal growth, casting, soldering, welding, high-energy surface treatment, nuclear safety systems and geophysical flows are just a few examples where solidification and convection occur together. These processes are interactive on micro- and macroscales: flow affects the distribution of heat and species and hence the freezing process, while solidification evolves flow boundaries, as in crusting, for example, and hence can radically alter the convection. Mathematical modellers, experimentalists and applied scientists were invited to this colloquium with the aim of consolidating our understanding of such interactions, of identifying key outstanding issues, and of developing new approaches in this important area of fundamental research. Both invited and contributed papers focus on both fundamental and technologically relevant problems.
One of the fundamental aspects of petroleum exploitation and production is that of petroleum engineering, ie the assessment and recovery of oil from the various types of oil 'reservoirs'. The importance of effective petroleum engineering has increased dramatically due to a number or of varying reasons. Firstly, recoverable oil reserves should be capable of extended life by application of efficient reservoir depletion methods. Secondly, the average recovery factor does not appear to have increased over the last three decades. Thirdly, the behaviour of reservoirs is still unpredictable in spite of the fact that the principles of oil recovery are better understood. Finally, there has been an enormous growth in the number of computer-based analysis techniques available to the engineer. These factors, taken in conjunction with the fact that many developments have been presented as unpublished papers, have highlighted the need for a series of volumes which will give the engineer a starting point for the collection of up-to-date information. This new series of volumes, Developments in Petroleum Engineering, is intended to fill this gap and will contain reviews of recent developments. The chapters are written by specialists at a level which summarises the progress, but does not necessarily cover every facet and detail, of a particular subject. Rather, they direct the reader to the most useful of the original sources.
This book contains the papers that were accepted for presentation at the 1988 NATO Advanced Study Institute on Underwater Acoustic Data Processing, held at the Royal Military College of Canada from 18 to 29 July, 1988. Approximately 110 participants from various NATO countries were in attendance during this two week period. Their research interests range from underwater acoustics to signal processing and computer science; some are renowned scientists and some are recent Ph.D. graduates. The purpose of the ASI was to provide an authoritative summing up of the various research activities related to sonar technology. The exposition on each subject began with one or two tutorials prepared by invited lecturers, followed by research papers which provided indications of the state of development in that specific area. I have broadly classified the papers into three sections under the titles of I. Propagation and Noise, II. Signal Processing and III. Post Processing. The reader will find in Section I papers on low frequency acoustic sources and effects of the medium on underwater acoustic propagation. Problems such as coherence loss due to boundary interaction, wavefront distortion and multipath transmission were addressed. Besides the medium, corrupting noise sources also have a strong influence on the performance of a sonar system and several researchers described methods of modeling these sources.
This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.
This book addresses supergravity and supergravity-motivated effective field theories in the context of cosmological model building. Extracting information about quintessence from string theory has attracted much attention in the past few years. The question became more urgent very recently after the possibility of obtaining de Sitter space was called into question. Therefore, there is an interesting debate as to whether de Sitter space or, even, quintessence can be derived from a fundamental theory, string theory or otherwise. This is a very active field of research, and the topics covered in the book render this work very timely. Throughout the book, special care has been taken in demonstrating historical relevance of the field and describing the set of open questions motivating the state-of-the-art research. The first few chapters in each part provide a detailed review of standard perturbative and non-perturbative techniques in supergravity model building, as a way to prepare the reader for the more technical and original subsequent chapters. These early chapters also represent a self-contained review that would be useful for anyone planning to enter this challenging area of study. The subsequent chapters detail research in supergravity-motivated effective field theories, in the first part, and supergravity models, in the second part. One of the important conclusions in this book is that modelling quintessence in perturbative string theory is at least as challenging as modelling de Sitter, placing the wider programme on a collision course with observations.
This book grew out of lectures on geophysical fluid dynamics delivered over many years at the Moscow Institute of Physics and Technology by the author (and, with regard to some parts of the book, by his colleagues). During these lectures the students were advised to read many books, and sometimes individual articles, in order to acquaint themselves with the necessary material, since there was no single book available which provided a sufficiently complete and systematic account (except, perhaps, the volumes on Hydrophysics of the Ocean, Hydrodynamics of the Ocean, and Geodynamics in the ten-volume Oceanology series published by Nauka Press in 1978-1979; these refer, however, specifically to the ocean, and anyway they are much too massive to be convenient for study by students). As far as we know, no text corresponding to our understanding of geophysical fluid dynamics has as yet been published outside the Soviet Union. The present book is designed to fill this gap. Since it is customary to write the preface after the entire book has been completed, the author has an opportunity there to raise some points of possible criticism by the reviewers and readers. First of all, note that this work presents the theoretical fundamentals of geophysical fluid dynamics, and that observational and experimental data (which in the natural sciences are always very copious) are referred to only rarely and briefly.
The thesis tackles two distinct problems of great interest in gravitational mechanics - one relativistic and one Newtonian. The relativistic one is concerned with the "first law of binary mechanics", a remarkably simple variational relation that plays a crucial role in the modern understanding of the gravitational two-body problem, thereby contributing to the effort to detect gravitational-wave signals from binary systems of black holes and neutron stars. The work reported in the thesis provides a mathematically elegant extension of previous results to compact objects that carry spin angular momentum and quadrupolar deformations, which more accurately represent astrophysical bodies than mere point particles. The Newtonian problem is concerned with the isochrone problem of celestial mechanics, namely the determination of the set of radial potentials whose bounded orbits have a radial period independent of the angular momentum. The thesis solves this problem completely in a geometrical way and explores its consequence on a variety of levels, in particular with a complete characterisation of isochrone orbits. The thesis is exceptional in the breadth of its scope and achievements. It is clearly and eloquently written, makes excellent use of images, provides careful explanations of the concepts and calculations, and it conveys the author's personality in a way that is rare in scientific writing, while never sacrificing academic rigor.
A description of the theoretical foundations of inelasticity, its numerical formulation and implementation, constituting a representative sample of state-of-the-art methodology currently used in inelastic calculations. Among the numerous topics covered are small deformation plasticity and viscoplasticity, convex optimisation theory, integration algorithms for the constitutive equation of plasticity and viscoplasticity, the variational setting of boundary value problems and discretization by finite element methods. Also addressed are the generalisation of the theory to non-smooth yield surface, mathematical numerical analysis issues of general return mapping algorithms, the generalisation to finite-strain inelasticity theory, objective integration algorithms for rate constitutive equations, the theory of hyperelastic-based plasticity models and small and large deformation viscoelasticity. Of great interest to researchers and graduate students in various branches of engineering, especially civil, aeronautical and mechanical, and applied mathematics.
This book addresses the hydrostatics and stability of ships and other floating marine structures - a fundamental aspect of naval architecture and offshore engineering for naval architects and marine engineers. It starts from the most basic concepts, assuming that the reader has no prior knowledge of the subject. By presenting the topic in a methodical and step-by-step manner, the book helps students to enhance their understanding, while also providing valuable guidelines for lecturers teaching related courses.
Intended for a two-semester course. Chapters discuss linear, time invariant, continuous-time systems and discrete-time systems; the Fourier transform; the Laplace transform; analog filters; the discrete Fourier transform; the z-transform; and digital filters. Worked examples and exercises are includ
This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.
The Springer Handbook of Auditory Research presents a series of comprehensive and synthetic reviews of the fundamental topics in modern auditory research. The v- umes are aimed at all individuals with interests in hearing research including advanced graduate students, post-doctoral researchers, and clinical investigators. The volumes are intended to introduce new investigators to important aspects of hearing science and to help established investigators to better understand the fundamental theories and data in fields of hearing that they may not normally follow closely. Each volume presents a particular topic comprehensively, and each serves as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in pe- reviewed journals. The volumes focus on topics that have developed a solid data and conceptual foundation rather than on those for which a literature is only beg- ning to develop. New research areas will be covered on a timely basis in the series as they begin to mature.
Covers the theory and practice of innovative new approaches to modelling acoustic propagation There are as many types of acoustic phenomena as there are media, from longitudinal pressure waves in a fluid to S and P waves in seismology. This text focuses on the application of computational methods to the fields of linear acoustics. Techniques for solving the linear wave equation in homogeneous medium are explored in depth, as are techniques for modelling wave propagation in inhomogeneous and anisotropic fluid medium from a source and scattering from objects. Written for both students and working engineers, this book features a unique pedagogical approach to acquainting readers with innovative numerical methods for developing computational procedures for solving problems in acoustics and for understanding linear acoustic propagation and scattering. Chapters follow a consistent format, beginning with a presentation of modelling paradigms, followed by descriptions of numerical methods appropriate to each paradigm. Along the way important implementation issues are discussed and examples are provided, as are exercises and references to suggested readings. Classic methods and approaches are explored throughout, along with comments on modern advances and novel modeling approaches. Bridges the gap between theory and implementation, and features examples illustrating the use of the methods described Provides complete derivations and explanations of recent research trends in order to provide readers with a deep understanding of novel techniques and methods Features a systematic presentation appropriate for advanced students as well as working professionals References, suggested reading and fully worked problems are provided throughout An indispensable learning tool/reference that readers will find useful throughout their academic and professional careers, this book is both a supplemental text for graduate students in physics and engineering interested in acoustics and a valuable working resource for engineers in an array of industries, including defense, medicine, architecture, civil engineering, aerospace, biotech, and more.
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein's general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it "a pedagogic masterpiece," and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field's frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level course. The remaining Track 2 material provides a wealth of advanced topics instructors can draw on for a two-semester course, with Track 1 sections serving as prerequisites. This must-have reference for students and scholars of relativity includes a new preface by David Kaiser, reflecting on the history of the book's publication and reception, and a new introduction by Charles Misner and Kip Thorne, discussing exciting developments in the field since the book's original publication. * The book teaches students to:* Grasp the laws of physics in flat and curved spacetime* Predict orders of magnitude* Calculate using the principal tools of modern geometry* Understand Einstein's geometric framework for physics* Explore applications, including neutron stars, Schwarzschild and Kerr black holes, gravitational collapse, gravitational waves, cosmology, and so much more |
You may like...
Outside In - The Transnational Circuitry…
Andrew Preston, Doug Rossinow
Hardcover
R3,755
Discovery Miles 37 550
|