![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics
We would like to take this opportunity to thank all of those individ uals who helped us assemble this text, including the people of Lockheed Sanders and Nestor, Inc., whose encouragement and support were greatly appreciated. In addition, we would like to thank the members of the Lab oratory for Engineering Man-Machine Systems (LEMS) and the Center for Neural Science at Brown University for their frequent and helpful discussions on a number of topics discussed in this text. Although we both attended Brown from 1983 to 1985, and had offices in the same building, it is surprising that we did not meet until 1988. We also wish to thank Kluwer Academic Publishers for their profes sionalism and patience, and the reviewers for their constructive criticism. Thanks to John McCarthy for performing the final proof, and to John Adcock, Chip Bachmann, Deborah Farrow, Nathan Intrator, Michael Perrone, Ed Real, Lance Riek and Paul Zemany for their comments and assistance. We would also like to thank Khrisna Nathan, our most unbi ased and critical reviewer, for his suggestions for improving the content and accuracy of this text. A special thanks goes to Steve Hoffman, who was instrumental in helping us perform the experiments described in Chapter 9."
This third issue on "progress in turbulence" is based on the third ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Researchers from the engineering and physical sciences gathered to present latest results on the rather notorious difficult and essentially unsolved problem of turbulence. This challenge is driving us in doing basic as well as applied research. Clear progress can be seen from these contributions in different aspects. New - phisticated methods achieve more and more insights into the underlying compl- ity of turbulence. The increasing power of computational methods allows studying flows in more details. Increasing demands of high precision large turbulence - periments become aware. In further applications turbulence seem to play a central issue. As such a new field this time the impact of turbulence on the wind energy conversion process has been chosen. Beside all progress our ability to numerically calculate high Reynolds number turbulent flows from Navier-Stokes equations at high precision, say the drag co- ficient of an airfoil below one percent, is rather limited, not to speak of our lack of knowledge to compute this analytically from first principles. This is rather - markable since the fundamental equations of fluid flow, the Navier-Stokes eq- tions, have been known for more than 150 years.
Millimeter-Wave Waveguides is a monograph devoted to open waveguides for millimeter wave applications. In the first chapters, general waveguide theory is presented (with the emphasis on millimeter wave applications). Next, the book systematically describes the results of both theoretical and experimental studies of rectangular dielectric rod waveguides with high dielectric permittivities. Simple and accurate methods for propagation constant calculations for isotropic as well as anisotropic dielectric waveguides are described. Both analytical and numerical approaches are covered. Different types of transitions have been simulated in order to find optimal configurations as well as optimal dimensions of dielectric waveguides for the frequency band of 75-110 GHz. Simple and effective design is presented. The experimental studies of dielectric waveguides show that Sapphire waveguide can be utilized for this frequency band as a very low-loss waveguide. Design of antennas with low return loss based on dielectric waveguides is also described.
This volume consists of invited lectures and seminars presented at the NATO Advanced Study Institute "The Gamma Ray Sky with COMPTON GRO and SIGMA," which was held at the Centre de Physique Theorique of Les Houches (France) in January / February 1994. The school has been planned by a Scientific Organizing Committee. It was organized with the aim of providing students and young researchers with an up-to-date account of the high-energy phenomena in the vicinity of compact objets and the diffuse gamma-ray backgrounds after the early results from the gamma-ray telescope SIGMA and the four instruments onboard COMPTON GRO (Gamma Ray Observatory): BATSE (Burst and Transient Source Experiment), COMPTEL(Compto'l Telescope), EGRET (Energetic Gamma Ray Experiment Telescope) and OS SE(Oriented Scintillation Spectrometer Experiment) . It was attended by more than sixty researchers from many countries. The lectures and seminars represent a complete coverage of our present knowledge and understanding of: Gamma-ray backgrounds, Gamma-ray Burts, Active Galactic Nuclei, Galactic Compact Objects, Gamma-ray Spectroscopy, Instrumentation and observation techniques, etc ... Most of these lectures are reproduced in this volume. Unfortunately, a few lecturers have chosen not to submit their manuscript.
With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 Flow and Combustion in Future Gas Turbine Combustion Chambers funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts"
The coupling between acoustic waves and fluid flow motion is basically nonlinear, with the result that flow and sound modify themselves reciprocally with respect to generation and propagation properties. As a result this problem is investigated by many different communities, such as applied mathematics, acoustics and fluid mechanics. This book is the result of an international school which was held to discuss the foundation of sound--flow interactions, to share expertise and methodologies, and to promote cross-fertilization between the different disciplines involved. It consists essentially of a set of pedagogical lectures and is meant to serve not only as a compact source of reference for the experienced researcher but also as an advanced textbook for postgraduate students, and nonspecialists wishing to familiarize themselves in depth, at a research level, with this fascinating subject.
Thematerialsusedinmanufacturingtheaerospace, aircraft, automobile, andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable mann
for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the 3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful."
The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer, andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thin vortex layers andtheirrolling-upintovortices, fromthevortex-corestructure, vortex motionandinteraction, totheburstofvortexlayerandvortexintosma- scalecoherentstructureswhichleadstothetransitiontoturbulence, and ?nallytothedissipationofthesmalleststructuresintoheat. 3. Wide range of topics.Inadditiontofundamentaltheoriesrelevanttothe abovesubjects, theirmostimportantapplicationsarealsopresented.This includes vortical structures in transitional and turbulent ?ows, vortical aerodynamics, and vorticity and vortices in geophysical ?ows. The last topic was suggested to be added by Late Sir James Lighthill, who read carefullyanearlydraftoftheplannedtableofcontentsofthebookin1994 andexpressedthathelikes"allthematerial"thatweproposedthere. These basic features of the present book are a continuation and - velopment of the spirit and logical structure of a Chinese monograph by the same authors, Introduction to Vorticity and Vortex Dynamics, Higher VI Preface EducationPress, Beijing,1993, butthematerialhasbeencompletelyrewr- tenandupdated.Thebookmay?tvariousneedsof?uiddynamicsscientists, educators, engineers, aswellasappliedmathematicians.Itsselectedchapters canalsobeusedastextbookforgraduatestudentsandseniorundergraduates. Thereadershouldhaveknowledgeofundergraduate?uidmechanicsand/or aerodynamicscourses.
Equations of the Ginzburg Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Holder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource."
This book was written to give energy-involved professionals the tools they need to take their energy audits to the next level, and use them to accurately predict a building's future energy use and true savings potential. Going beyond the conventional energy audit, which can lead to projections which are frequently off by as much as 20%, this book provides detailed guidelines on how to use the new tool, the investment grade audit (IGA), which enables prediction of savings with much greater accuracy. Building on the traditional audit, the IGA requires the addition of a "risk assessment component" which evaluates conditions in a specific building and/or process and reduces the level of uncertainty as to how proposed energy efficiency measures will really behave over time. The authors have covered every aspect of the IGA, including risk management, the "people" factor, measurement and verification, financing issues, report presentation guidelines, and master planning strategies.
John Eargle's 4th edition of The Handbook of Recording Engineering is the latest version of his long-time classic hands-on book for aspiring recording engineers. It follows the broad outline of its predecessors, but has been completely recast for the benefit of today's training in recording and its allied arts and sciences. Digital recording and signal processing are covered in detail, as are actual studio miking and production techniques -- including the developing field of surround sound. As always, the traditional topics of basic stereo, studio acoustics, analog tape recording, and the stereo LP are covered in greater detail than you are likely to find anywhere except in archival references. This book has been completely updated with numerous new topics added and outdated material removed. Many technical descriptions are now presented in Sidebars, leaving the primary text for more general descriptions. Handbook of Recording Engineering, Fourth Edition is for students preparing for careers in audio, recording, broadcast, and motion picture sound work. It will also be useful as a handbook for professionals already in the audio workplace.
Over the last few years it has become apparent that fluid turbulence shares many common features with plasma turbulence, such as coherent structures and self-organization phenomena, passive scalar transport and anomalous diffusion. This book gathers very high level, current papers on these subjects. It is intended for scientists and researchers, lecturers and graduate students because of the review style of the papers.
The origins of turbulent ?ow and the transition from laminar to turbulent ?ow are the most important unsolved problems of ?uid mechanics and aerodynamics. - sides being a fundamental question of ?uid mechanics, there are numerous app- cations relying on information regarding transition location and the details of the subsequent turbulent ?ow. For example, the control of transition to turbulence is - pecially important in (1) skin-friction reduction of energy ef?cient aircraft, (2) the performance of heat exchangers and diffusers, (3) propulsion requirements for - personic aircraft, and (4) separation control. While considerable progress has been made in the science of laminar to turbulent transition over the last 30 years, the c- tinuing increase in computer power as well as new theoretical developments are now revolutionizing the area. It is now starting to be possible to move from simple 1D eigenvalue problems in canonical ?ows to global modes in complex ?ows, all - companied by accurate large-scale direct numerical simulations (DNS). Here, novel experimental techniques such as modern particle image velocimetry (PIV) also have an important role. Theoretically the in?uence of non-normality on the stability and transition is gaining importance, in particular for complex ?ows. At the same time the enigma of transition in the oldest ?ow investigated, Reynolds pipe ?ow tran- tion experiment, is regaining attention. Ideas from dynamical systems together with DNS and experiments are here giving us new insights.
An introduction to certain aspects of developments in the modern theory of dynamics and simulation for a wide audience of scientifically literate readers. Unlike general texts on chaos theory and dynamical systems theory, this book follows the work on a specific problem at the very beginning of the modern era of dynamics, from its inception in 1954 through the early 1970s. It discusses such problems as the nonlinear oscillator simulation, the seminal discoveries at MIT in the early 1950s, the mathematical rediscovery of solitons in the late 1950s and the general problems of computability. In following these developments, the initial development of many of the now standard techniques of nonlinear modelling and numerical simulation are seen. No other text focuses so tightly and covers so completely one specific, pernicious problem at the heart of dynamics.
The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In Connectivity and Superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.
There has been continuing interest in the improvement of the speed of Digital Signal processing. The use of Residue Number Systems for the design of DSP systems has been extensively researched in literature. Szabo and Tanaka have popularized this approach through their book published in 1967. Subsequently, Jenkins and Leon have rekindled the interest of researchers in this area in 1978, from which time there have been several efforts to use RNS in practical system implementation. An IEEE Press book has been published in 1986 which was a collection of Papers. It is very interesting to note that in the recent past since 1988, the research activity has received a new thrust with emphasis on VLSI design using non ROM based designs as well as ROM based designs as evidenced by the increased publications in this area. The main advantage in using RNS is that several small word-length Processors are used to perform operations such as addition, multiplication and accumulation, subtraction, thus needing less instruction execution time than that needed in conventional 16 bitl32 bit DSPs. However, the disadvantages of RNS have b. een the difficulty of detection of overflow, sign detection, comparison of two numbers, scaling, and division by arbitrary number, RNS to Binary conversion and Binary to RNS conversion. These operations, unfortunately, are computationally intensive and are time consuming."
Generalized Plasticity deals with the plasticity of materials and structures. It is an expansion of the "Unified Strength Theory to Plasticity Theory," leading to a unified treatment of metal plasticity and plasticity of geomaterials, generally. It includes the metal plasticity for Tresca materials, Huber-von-Mises materials and twin-shear materials and the geomaterial plasticity for Mohr-Coulomb materials, generalized twin-shear materials and the Unified Strength Theory. |
You may like...
Meshfree Methods for Partial…
Michael Griebel, Marc Alexander Schweitzer
Hardcover
Fixed-Time Cooperative Control of…
Zongyu Zuo, Qinglong Han, …
Hardcover
R3,106
Discovery Miles 31 060
Bhagavad Gita As It Is [Kannada…
A. C. Bhaktivedanta Swami Prabhup ada
Hardcover
R645
Discovery Miles 6 450
|