![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
Coding and Modulation for Digital Television presents a comprehensive description of all error control coding and digital modulation techniques used in Digital Television (DTV). This book illustrates the relevant elements from the expansive theory of channel coding to how the transmission environment dictates the choice of error control coding and digital modulation schemes. These elements are presented in such a way that both the mathematical integrity' and understanding for engineers' are combined in a complete form and supported by a number of practical examples. In addition, the book contains descriptions of the existing standards and provides a valuable source of corresponding references. Coding and Modulation for Digital Television also features a description of the latest techniques, providing the reader with a glimpse of future digital broadcasting. These include the concepts of soft-in-soft-out decoding, turbo-coding and cross-correlated quadrature modulation, all of which will have a prominent future in improving efficiency of the next generation DTV systems. Coding and Modulation for Digital Television is essential reading for all undergraduate and postgraduate students, broadcasting and communication engineers, researchers, marketing managers, regulatory bodies, governmental organizations and standardization institutions of the digital television industry.
The use of various types of wave energy is an increasingly promising, non-destructive means of detecting objects and of diagnosing the properties of quite complicated materials. An analysis of this technique requires an understanding of how waves evolve in the medium of interest and how they are scattered by inhomogeneities in the medium. These scattering phenomena can be thought of as arising from some perturbation of a given, known system and they are analysed by developing a scattering theory. This monograph provides an introductory account of scattering phenomena and a guide to the technical requirements for investigating wave scattering problems. It gathers together the principal mathematical topics which are required when dealing with wave propagation and scattering problems, and indicates how to use the material to develop the required solutions. Both potential and target scattering phenomena are investigated and extensions of the theory to the electromagnetic and elastic fields are provided. Throughout, the emphasis is on concepts and results rather than on the fine detail of proof; a bibliography at the end of each chapter points the interested reader to more detailed proofs of the theorems and suggests directions for further reading.Aimed at graduate and postgraduate students and researchers in mathematics and the applied sciences, this book aims to provide the newcomer to the field with a unified, and reasonably self-contained, introduction to an exciting research area and, for the more experienced reader, a source of information and techniques.
This book covers the technology of switching or modulating light in semiconductor optical waveguides. Currently a key function for optical communications systems is the conversion of data from an electrical signal to an optical signal for transmission in very low loss optical fibres and the converse process of optical to electrical conversion the O/E/O data conversion. This conversion between electronic and photonic signals imposes an energy consumption overhead on optical communication systems. So many research workers have been attracted to ultrafast all-optical switching of data in different formats. As a way of introduction to all-optical switching in semiconductor waveguides the book covers the electro-optic effect, electroabsorption and electrorefraction; effects that can be used in semiconductor optical modulation devices. But the book focuses on all-optical switching using second and third order optical nonlinearities in AlGaAs optical waveguides. It covers a variety of device configurations including integrated nonlinear couplers and Mach-Zehnder interferometers. Further, it provides design software in suit of Mathematica notebooks that can be used to explore the device design.
Mechanics plays a central role in determining form and function in biology. This holds at the cellular, molecular and tissue scales. At the cellular scale, mechanics in?uences cell adhesion, cytoskeletal dynamics and the traction that the cell can generate on a given substrate. All of these in turn - fect the cellular functions of migration, mitosis, phagocytosis, endocytosis and stem cell differentiation among others. Indeed, if cells do not develop the appropriate stresses, they are unviable and die. These aspects of cell mechanics are frequently used by mainstream biologists, as traditional mechanicians may be surprised to learn. There is a growing view that many functions of the cell are mechanical in nature even though chemical signals play crucial roles in the processes. Free energy barriers control transitions between different conformations of vir- ally every macromolecule including DNA, RNA, the adhesion protein integrin, the motor protein myosin, and the proteins vinculin and talin that link the cytoskeleton to focal adhesions. The strain energy can be a signi?cant component of the total free energy barrier. For binding to take place, the macromolecules need to be in conf- mational states that expose chemical groups without steric hinderance. The kinetics of chemical reactions are therefore strongly in?uenced by the conformational strain energy.
Welcome to the fourth IFIP workshop on protocols for high speed networks in Vancouver. This workshop follows three very successful workshops held in Ziirich (1989), Palo Alto (1990) and Stockholm (1993) respectively. We received a large number of papers in response to our call for contributions. This year, forty papers were received of which sixteen were presented as full papers and four were presented as poster papers. Although we received many excellent papers the program committee decided to keep the number of full presentations low in order to accommodate more discussion in keeping with the format of a workshop. Many people have contributed to the success of this workshop including the members of the program committee who, with the additional reviewers, helped make the selection of the papers. We are thankful to all the authors of the papers that were submitted. We also thank several organizations which have contributed financially to this workshop, specially NSERC, ASI, CICSR, UBC, MPR Teltech and Newbridge Networks.
Dynamics of Polymeric Liquids, Second Edition Volume 2: Kinetic Theory R. Byron Bird, Charles F. Curtiss, Robert C. Armstrong and Ole Hassager Volume Two deals with the molecular aspects of polymer rheology and fluid dynamics. It is the only book currently available dealing with kinetic theory and its relation to nonlinear rheological properties. Considerable emphasis is given to the connection between kinetic theory results and experimental data. The second edition contains new material on the basis for molecular modeling, the application of phase--space theory to dilute solutions, kinetic theory of melts and melt mixtures, and network theories. 1987 (0 471--80244--1) 450 pp.
Waves represent a classic topic of study in physics, mathematics, and engineering. Many modern technologies are based on our understanding of waves and their interaction with matter. In the past thirty years there have been some revolutionary developments in the study of waves. The present volume is the only available source which details these developments in a systematic manner, with the aim of reaching a broad audience of non-experts. It is an important resource book for those interested in understanding the physics underlying nanotechnology and mesoscopic phenomena, as well as for bridging the gap between the textbooks and research frontiers in any wave related topic. A special feature of this volume is the treatment of classical and quantum mechanical waves within a unified framework, thus facilitating an understanding of similarities and differences between the two.
The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Aerospace Engineering, and the Office of International Studies (of the University of Central Florida) for the financial support of the conference. Also, to the Mathematics Department of the University of Central Florida for providing secretarial and administrative assistance. I would like to thank the members of the local organizing committee, Jeanne Blank, Jackie Callahan, John Cannon, Holly Carley, Brad Pyle, Pete Rautenstrauch, and June Wingler for their assistance. Thanks are also due to the conference organizing committee, F. H. Busse, J. R. Cannon, V. Girault, R. H. J. Grimshaw, P. N. Kaloni, V.
A reissue of a classic book, intended for undergraduate courses in biophysics, biological physics, physiology, medical physics, and biomedical engineering. This is an introduction to mechanics, with examples and problems from the medical and biological sciences, covering standard topics of kinematics, dynamics, statics, momentum, and feedback, control and stability but with the emphasis on physical and biological systems. The book can be used as a supplement to standard introductory physics courses, as well as for medical schools, medical physics courses, and biology departments. The three volumes combined present all the major topics in physics. Originally published in 1974 from the authors typescript, this reissue will be edited, corrected, typeset, the art redrawn, and an index added, plus a solutions manual will also be available.
This is the first monograph in the theory of p-adic (and more general non-Archimedean) dynamical systems. The theory of such systems is a new intensively developing discipline on the boundary between the theory of dynamical systems, theoretical physics, number theory, algebraic geometry and non-Archimedean analysis. Investigations on p-adic dynamical systems are motivated by physical applications (p-adic string theory, p-adic quantum mechanics and field theory, spin glasses) as well as natural inclination of mathematicians to generalize any theory as much as possible (e.g., to consider dynamics not only in the fields of real and complex numbers, but also in the fields of p-adic numbers). The main part of the book is devoted to discrete dynamical systems: cyclic behavior (especially when p goes to infinity), ergodicity, fuzzy cycles, dynamics in algebraic extensions, conjugate maps, and small denominators. There are also studied p-adic random dynamical system, especially Markovian behavior (depending on p). In 1997 one of the authors proposed to apply p-adic dynamical systems for modeling of cognitive processes. algebraic structure of fields of p-adic numbers, but by their tree-like hierarchical structures. In this book, there is presented a model of probabilistic thinking on p-adic mental space based on ultrametric diffusion. There are also studied p-adic neural network and their applications to cognitive sciences: learning algorithms, memory recalling. Finally, there are considered wavelets on general ultrametric spaces, developed corresponding calculus of pseudo-differential operators and considered cognitive applications. This book will be of interest to mathematicians working in the theory of dynamical systems, number theory, algebraic geometry, non-Archimedean analysis as well as general functional analysis, theory of pseudo-differential operators; physicists working in string theory, quantum mechanics, field theory, spin glasses; psychologists and other scientists working in cognitive sciences and even mathematically oriented philosophers.
The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a "close talking" headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal."
A major advantage of a direct digital synthesizer is that its output frequency, phase and amplitude can be precisely and rapidly manipulated under digital processor control. This book was written to find possible applications for radio communication systems.
Up-to-date coverage of the analysis and applications of coplanar waveguides to microwave circuits and antennas The unique feature of coplanar waveguides, as opposed to more conventional waveguides, is their uniplanar construction, in which all of the conductors are aligned on the same side of the substrate. This feature simplifies manufacturing and allows faster and less expensive characterization using on-wafer techniques. Coplanar Waveguide Circuits, Components, and Systems is an engineer’s complete resource, collecting all of the available data on the subject. Rainee Simons thoroughly discusses propagation parameters for conventional coplanar waveguides and includes valuable details such as the derivation of the fundamental equations, physical explanations, and numerical examples. Coverage also includes:
Modern airborne and spaceborne imaging radars, known as synthetic aperture radars (SARs), are capable of producing high-quality pictures of the earth's surface while avoiding some of the shortcomings of certain other forms of remote imaging systems. Primarily, radar overcomes the nighttime limitations of optical cameras, and the cloud- cover limitations of both optical and infrared imagers. In addition, because imaging radars use a form of coherent illumination, they can be used in certain special modes such as interferometry, to produce some unique derivative image products that incoherent systems cannot. One such product is a highly accurate digital terrain elevation map (DTEM). The most recent (ca. 1980) version of imaging radar, known as spotlight-mode SAR, can produce imagery with spatial resolution that begins to approach that of remote optical imagers. For all of these reasons, synthetic aperture radar imaging is rapidly becoming a key technology in the world of modern remote sensing. Much of the basic workings' of synthetic aperture radars is rooted in the concepts of signal processing. Starting with that premise, this book explores in depth the fundamental principles upon which the spotlight mode of SAR imaging is constructed, using almost exclusively the language, concepts, and major building blocks of signal processing. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach is intended for a variety of audiences. Engineers and scientists working in the field of remote sensing but who do not have experience with SAR imaging will find an easy entrance into what can seem at times a very complicated subject. Experienced radar engineers will find that the book describes several modern areas of SAR processing that they might not have explored previously, e.g. interferometric SAR for change detection and terrain elevation mapping, or modern non-parametric approaches to SAR autofocus. Senior undergraduates (primarily in electrical engineering) who have had courses in digital signal and image processing, but who have had no exposure to SAR could find the book useful in a one-semester course as a reference.
This textbook offers a clear and comprehensive introduction to analytical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction into Lagrangian mechanics, detailing the d'Alembert principle, Hamilton's principle and conservation laws. It continues with an in-depth explanation of Hamiltonian mechanics, illustrated by canonical and Legendre transformation, the generalization to quantum mechanics through Poisson brackets and all relevant variational principles. Finally, the Hamilton-Jacobi theory and the transition to wave mechanics are presented in detail. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cover the complete core curriculum of theoretical physics at undergraduate level. Each volume is self-contained and provides all the material necessary for the individual course topic. Numerous problems with detailed solutions support a deeper understanding. Wolfgang Nolting is famous for his refined didactical style and has been referred to as the "German Feynman" in reviews.
This text describes computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. Included in the two-dimensional program are Maxwell's equations, and thermal and radiation diffusion. The numerical procedures described in the text permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.
This volume collects the edited and reviewed contributions presented in the 6th iTi Conference in Bertinoro, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume has been produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. In the present book the contributions have been structured according to the topics : I Theory II Wall bounded flows III Particles in flows IV Free flows V Complex flows The volume is dedicated to the memory of Prof. Konrad Bajer who prematurely passed away in Warsaw on August 29, 2014.
The present volume offers a state-of-the-art report on the various recent scientific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and multiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisticated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems.
Exclusive book integrating thermal sciences and computational approaches Covers both philosophical concepts related to systems and design, to numerical methods, to design of specific systems, to computational fluid dynamics strategies Focus on solving complex real-world thermal system design problems instead of just designing a single component or simple systems Introduces usage of statistics and machine learning methods to optimize the system Includes sample PYTHON codes, exercise problems, special projects
Leonardo wrote, Mechanics is the paradise of the mathematical
sciences, because by means of it one comes to the fruits of
mathematics; replace Mechanics by Fluid mechanics and here we
are. Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity and surface tension cannot be ignored. The advent of nanotechnology has broadened interest in the hydrodynamics of thin films, and hydromagnetic effects and radiative heat transfer are routinely encountered in materials processing. This monograph develops the basic equations, in the three most important coordinate systems, in a way that makes it easy to incorporate these phenomena into the theory. The book originally described by Prof. Langlois as "a monograph on theoretical hydrodynamics, written in the language of applied mathematics" offers much new coverage including the second principle of thermodynamics, the Boussinesq approximation, time dependent flows, Marangoni convection, Kovasznay flow, plane periodic solutions, Hele-Shaw cells, Stokeslets, rotlets, finite element methods, Wannier flow, corner eddies, and analysis of the Stokes operator. "
At the opening of the "Third Meeting on Celestial Mechanics - CELMEC III", strong sensations hit our minds. The conference (18-22 June 2001) was being held in Villa Mondragone, a beautiful complex of buildings and gardens located within the township of Monte Porzio Catone, on the hills surrounding Rome. A former papal residence, the building has been recently restored by the University of Rome "Tor Vergata" to host academic activities and events. The conference room is called "Salone degli Svizzeri": here, Gregory XIII, on February 24, 1582, gave its sanction to the reform of the Julian calendar and declared officially in use the calendar still adopted nowadays. The magnificent high walls and tall ceiling strongly resounded, giving to our voice a peculiar Vatican sound, which took us by surprise. May be - we thought - a distant echo of the very words of Gregory XIII proclaiming the modem calendar was still haunting the room. Around us, in the audience, many countries were represented, thus indicating that the idea of putting together the three "souls" of modem Celestial Mechanics - perturbation theories, solar and stellar system studies, spaceflight dynamic- had been successful. CELMEC III is in fact the latest of a series of meetings (the first two editions took place in 1993 and 1997 in L' Aquila, Italy) whose aim is to establish a common ground among people working in Celestial Mechanics, yet belonging to different institutions such as universities, astronomical observatories, research institutes, space agencies and industries.
This book is about the pattern formation and the evolution of crack propagation in engineering materials and structures, bridging mathematical analyses of cracks based on singular integral equations, to computational simulation of engineering design. The first two parts of this book focus on elasticity and fracture and provide the basis for discussions on fracture morphology and its numerical simulation, which may lead to a simulation-based fracture control in engineering structures. Several design concepts are discussed for the prevention of fatigue and fracture in engineering structures, including safe-life design, fail-safe design, damage tolerant design. After starting with basic elasticity and fracture theories in parts one and two, this book focuses on the fracture morphology that develops due to the propagation of brittle cracks or fatigue cracks. In part three, the mathematical analysis of a curved crack is precisely described, based on the perturbation method. The stability theory of interactive cracks propagating in brittle solids may help readers to understand the formation of a fractal-like cracking patterns in brittle solids, while the stability theory of crack paths helps to identify the straight versus sharply curved or sometimes wavy crack paths observed in brittle solids. In part four, the numerical simulation method of a system of multiple cracks is introduced by means of the finite element method, which may be used for the better implementation of fracture control in engineering structures. This book is part of a series on Mathematics for Industry and will appeal to structural engineers seeking to understand the basic backgrounds of analyses, but also to mathematicians with an interest in how such mathematical solutions are evaluated in industrial applications."
POLYMER MODELS AND EQUILIBRIUM PROPERTIES. Mechanical Models for Polymer Molecules. Equilibrium Configurations of Polymer Molecules. ELEMENTARY APPROACH TO KINETIC THEORY. Elastic Dumbbell Models. The Rigid Dumbbell and Multibead-Rod Models. The Bead-Spring Chain Models. General Bead-Rod-Spring Models. A GENERAL PHASE-SPACE KINETIC THEORY. Phase-Space Theory of Polymeric Liquids. Phase-Space Theory for Dilute Solutions. Phase-Space Theory for Concentrated Solutions and Melts. ELEMENTARY KINETIC THEORY FOR NETWORK MODELS. Network Theories for Polymer Melts and Concentrated Solutions. APPENDICES. Summary of Continuum Mechanics Notation and Results. Useful Mathematical Formulas. Author Index. Subject Index.
FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others. |
![]() ![]() You may like...
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Paperback
R945
Discovery Miles 9 450
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, …
Paperback
R1,493
Discovery Miles 14 930
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,589
Discovery Miles 25 890
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R941
Discovery Miles 9 410
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,237
Discovery Miles 42 370
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar
Paperback
R4,069
Discovery Miles 40 690
Similarity Solutions for the Boundary…
John H Merkin, Ioan Pop, …
Paperback
R4,120
Discovery Miles 41 200
|