![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
The present volume offers a state-of-the-art report on the various recent scientific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and multiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisticated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems.
This textbook offers a clear and comprehensive introduction to analytical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction into Lagrangian mechanics, detailing the d'Alembert principle, Hamilton's principle and conservation laws. It continues with an in-depth explanation of Hamiltonian mechanics, illustrated by canonical and Legendre transformation, the generalization to quantum mechanics through Poisson brackets and all relevant variational principles. Finally, the Hamilton-Jacobi theory and the transition to wave mechanics are presented in detail. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cover the complete core curriculum of theoretical physics at undergraduate level. Each volume is self-contained and provides all the material necessary for the individual course topic. Numerous problems with detailed solutions support a deeper understanding. Wolfgang Nolting is famous for his refined didactical style and has been referred to as the "German Feynman" in reviews.
At the opening of the "Third Meeting on Celestial Mechanics - CELMEC III", strong sensations hit our minds. The conference (18-22 June 2001) was being held in Villa Mondragone, a beautiful complex of buildings and gardens located within the township of Monte Porzio Catone, on the hills surrounding Rome. A former papal residence, the building has been recently restored by the University of Rome "Tor Vergata" to host academic activities and events. The conference room is called "Salone degli Svizzeri": here, Gregory XIII, on February 24, 1582, gave its sanction to the reform of the Julian calendar and declared officially in use the calendar still adopted nowadays. The magnificent high walls and tall ceiling strongly resounded, giving to our voice a peculiar Vatican sound, which took us by surprise. May be - we thought - a distant echo of the very words of Gregory XIII proclaiming the modem calendar was still haunting the room. Around us, in the audience, many countries were represented, thus indicating that the idea of putting together the three "souls" of modem Celestial Mechanics - perturbation theories, solar and stellar system studies, spaceflight dynamic- had been successful. CELMEC III is in fact the latest of a series of meetings (the first two editions took place in 1993 and 1997 in L' Aquila, Italy) whose aim is to establish a common ground among people working in Celestial Mechanics, yet belonging to different institutions such as universities, astronomical observatories, research institutes, space agencies and industries.
FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others.
This volume collects the edited and reviewed contributions presented in the 6th iTi Conference in Bertinoro, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume has been produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. In the present book the contributions have been structured according to the topics : I Theory II Wall bounded flows III Particles in flows IV Free flows V Complex flows The volume is dedicated to the memory of Prof. Konrad Bajer who prematurely passed away in Warsaw on August 29, 2014.
st The21 InternationalCongressofTheoreticalandAppliedMechanics (ICTAM04) took place August 15 - 21, 2004, in Warsaw, Poland. It was organized by Polish National Committee of IUTAM, Institute of Fundamental Technological Research of the Polish Academy of Sciences (IPPTPAN)andWarsawUniversityofTechnology. TheCongressvenue was the main building of Warsaw University of Technology. The idea of congresses devoted to mechanics, can be traced back to a conference on problems of?uid mechanics in Innsbruck, 1922. It was organized by four individuals, whose names, are and will, remain very wellknowntonextgenerationsofscientists,C.W.Oseen,T.Levi-Civite, T.vonKarm ' ' ' an,andL.Prandtl. Thisconferencewassofruitful,thatthe organizers decided to arrange similar meetings in the future, every four years, and to extend the scope of the future meetings to include solid mechanics. Hence a series of meetings started eighty years agowiththe st 1 ICTAM held in Delft, Netherlands. From the meetingsoftheCongress Committee sprang the idea of a more permanent organization to look out for the world interests in the mechanical sciences. Thus, IUTAM, theInternational Unionof Theor- ical and Applied Mechanics, was formed on September 26, 1946. In 1947 IUTAM became a member of ICSU, the International Council of Sci- ti?c Unions, itself founded in 1931. The highest authority of IUTAMis the General Assembly, with delegates from the Adhering Organizations, each of which is a?liated with a national learned society in a given country. Scienti?cProgram Contemporary mechanics poses both, the fundamental problems from the area of pure science, and its strong links with modern technology.
This book describes in detail the current, state-of-the-art numerical treatment and simulation of multiphase flows in porous media. The porous media considered range from ordinary to fractured and deformable media, the models treated from single-phase compressible flow to multiphase multicomponent flow with mass interchange, while the computational algorithms encompass everything from classical iterative solvers to modern multigrid and domain decomposition approaches. Addressing many problems originating from the applied geosciences, the book focuses on their common mathematical and computational aspects. It will serve as an excellent research reference for all geoscientists, mathematicians, physicists, and engineers who work in the mathematical modeling and numerical simulation of multiphase flows in porous media.
Leonardo wrote, Mechanics is the paradise of the mathematical
sciences, because by means of it one comes to the fruits of
mathematics; replace Mechanics by Fluid mechanics and here we
are. Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity and surface tension cannot be ignored. The advent of nanotechnology has broadened interest in the hydrodynamics of thin films, and hydromagnetic effects and radiative heat transfer are routinely encountered in materials processing. This monograph develops the basic equations, in the three most important coordinate systems, in a way that makes it easy to incorporate these phenomena into the theory. The book originally described by Prof. Langlois as "a monograph on theoretical hydrodynamics, written in the language of applied mathematics" offers much new coverage including the second principle of thermodynamics, the Boussinesq approximation, time dependent flows, Marangoni convection, Kovasznay flow, plane periodic solutions, Hele-Shaw cells, Stokeslets, rotlets, finite element methods, Wannier flow, corner eddies, and analysis of the Stokes operator. "
This text provides an introduction, at the level of an advanced student in engineering or physics, to the field of nanomechanics and nanomechanical devices. It provides a unified discussion of solid mechanics, transducer applications, and sources of noise and nonlinearity in such devices. Demonstrated applications of these devices, as well as an introduction to fabrication techniques, are also discussed. The text concludes with an overview of future technologies, including the potential use of carbon nanotubes and other molecular assemblies.
This is the second volume of three books devoted to Mechanics. In this book, dynamical and advanced mechanics problems are stated, illustrated, and discussed, including a few novel concepts in comparison to standard text books and monographs. Apart from being addressed to a wide spectrum of graduate students, postgraduate students, researchers, and teachers from the fields of mechanical and civil engineering, this volume is also intended to be used as a self-contained material for applied mathematicians and physical scientists and researchers.
Con?gurational mechanics has attracted quite a bit of attention from various - search ?elds over the recent years/decades. Having been regarded in its infancy of the early years as a somewhat obscureand almost mystic ?eld of researchthat could only be understood by a happy few of insiders with a pronounced theoretical inc- nation, con?gurational mechanics has developed by now into a versatile tool that can be applied to a variety of problems. Since the seminal works of Eshelby a general notion of con?gurational - chanics has been developed and has successfully been applied to many pr- lems involving various types of defects in continuous media. The most pro- nent application is certainly the use of con?gurational forces in fracture - chanics. However, as con?gurational mechanics is related to arbitrary mat- ial inhomogeneities it has also very successfully been applied to many ma- rials science and engineering problems such as phase transitions and inelastic deformations. Also the modeling of materials with micro-structure evolution is an important ?eld, in which con?gurational mechanics can provide a better understanding of processes going on within the material. Besides these mechanically, physically, and chemically motivated applications, ideas from con?gurational mechanics are now increasingly applied within computational mechanics.
The Integrated Services Digital Network (ISDN) represents the current position in about a hundred years of evolutionary growth of the worldwide telecommunications infrastructure. This evolution is by no means complete and the next few years will see the emergence of a "Broad-band" ISDN as the next stage of evolutionary development. It is important to appreciate the evolutionary nature of the telecommunications infrastructure if one is to properly understand much of the thinking that lies behind the current ISDN proposals. This book therefore begins with a number of chapters devoted to a study of the various developments which have eventually led to the concept of an integrated digital network. These include the development of digital transmission of speech using PCM and the development of digital switching techniques based on stored program control. The book then turns to a consideration of those features of the existing telecommunications network which need to be modified in order to make ISDN a realizable practicality. Of particular importance is the digitization of transmission over the links between the user and the local exchange. Next we look at the current practice and proposals for ISDN based on the technology presently in use in the telephone network. Finally, we look at the proposals for a broadband ISDN likely to become widely available by the turn of the century.
This symposium was devoted to a new celestial mechanics whose aim has become the study of such objects' as the planetary system, planetary rings, the asteroidal belt, meteor swarms, satellite systems, comet families, the zodiacal cloud, the preplanetary nebula, etc. When the three-body problem is considered instead of individual orbits we are, now, looking for the topology of extended regions of its phase space. This Symposium was one step in the effort to close the ties between two scientific families: the observationally-oriented scientists and the theoretically-oriented scientists.
The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.
This book is about the pattern formation and the evolution of crack propagation in engineering materials and structures, bridging mathematical analyses of cracks based on singular integral equations, to computational simulation of engineering design. The first two parts of this book focus on elasticity and fracture and provide the basis for discussions on fracture morphology and its numerical simulation, which may lead to a simulation-based fracture control in engineering structures. Several design concepts are discussed for the prevention of fatigue and fracture in engineering structures, including safe-life design, fail-safe design, damage tolerant design. After starting with basic elasticity and fracture theories in parts one and two, this book focuses on the fracture morphology that develops due to the propagation of brittle cracks or fatigue cracks. In part three, the mathematical analysis of a curved crack is precisely described, based on the perturbation method. The stability theory of interactive cracks propagating in brittle solids may help readers to understand the formation of a fractal-like cracking patterns in brittle solids, while the stability theory of crack paths helps to identify the straight versus sharply curved or sometimes wavy crack paths observed in brittle solids. In part four, the numerical simulation method of a system of multiple cracks is introduced by means of the finite element method, which may be used for the better implementation of fracture control in engineering structures. This book is part of a series on Mathematics for Industry and will appeal to structural engineers seeking to understand the basic backgrounds of analyses, but also to mathematicians with an interest in how such mathematical solutions are evaluated in industrial applications."
The free electron laser (FEL) will be an outstanding tool for research and industrial application. This book describes the physical fundamentals on the basis of classical mechanics, electrodynamics, and the kinetic theory of charged particle beams, and will be suitable for graduate students and scientists alike.After a short introduction, the book discusses the theory of the FEL amplifier and oscillator and diffraction effects in the amplifier. Waveguide FEL and shot noise are also treated.
This treatise is a compendium of refereed papers based on invited talks presented at the American Chemical Society Symposium on Electrorheological (ER) Materials and Fluids. ER fluids were first investigated 50+ years ago. These fluids, which change rheology when placed in an electric field, were recognized, from the beginning, for allowing an extremely efficient interface between electrical control and mechanical devices. Critical problems, however, existed with the initial fluids, which prevented them from serious consideration for large-scale applications. While over time some of the critical problems have been solved and activity in ER technology has increased, commercial success has remained elusive. A recent Department of Energy report concluded that a primary reason for the failure to commercialize this promising technology is due to a lack in understanding the physics and chemistry of how the materials work. The goal of the symposium was to address the issue of understanding how ER materials work and how they can be used. One of the outcomes of the symposium, which we hope is conveyed in this book, is a feeling that if the mechanism of ER is to be fully understood and improved, expertise from diverse fields must be applied to the problem.
This thesis presents significant new results on the problem of understanding the origin of dark energy in cosmology. The work develops an original approach based on modifications of General Relativity at cosmological scales, introducing non -local effective terms that can in principle emerge from fundamental local theories. Both the phenomenological consequences and theoretical aspects of the proposal are developed in depth. The thesis also contains significant new material compared to that published by the author in scientific journals.
Theory of vibrations belongs to principal subjects needed for training mechani cal engineers in technological universities. Therefore, the basic goal of the mono graph "Advanced Theory of Vibrations 1" is to help students studying vibration theory for gaining experience in application of this theory for solving particular problems. Thus, while choosing the problems and methods to solve them, the close attention was paid to the applied content of vibration theory. The monograph is devoted to systems with a single degree of freedom and sys tems with a finite number of degrees of freedom. In particular, problems are for mulated associated with determination of frequencies and forms of vibrations, study of forced vibrations, analysis of both stable and unstable vibrations (includ ing those caused by periodic but anharmonic forces). The problems of nonlinear vibrations and of vibration stability, and those related to seeking probabilistic characteristics for solutions to these problems in the case of random forces are also considered. Problems related to parametric vibrations and statistical dynamics of mechanical systems, as well as to determination of critical parameters and of dy namic stability are also analyzed. As a rule, problems presented in the monograph are associated with particular mechanical systems and can be applied for current studies in vibration theory. Al lowing for interests of students independently studying theory of vibrations, the majority of problems are supplied with either detailed solutions or algorithms of the solutions."
A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold of all possible positions of system at given instant. The tangential space is partitioned by the equations of constraints into two orthogonal subspaces. In one of them for the constraints up to the second order, the motion low is given by the equations of constraints and in the other one for ideal constraints, it is described by the vector equation without reactions of connections. In the whole space the motion low involves Lagrangian multipliers. It is shown that for the holonomic and nonholonomic constraints up to the second order, these multipliers can be found as the function of time, positions of system, and its velocities. The application of Lagrangian multipliers for holonomic systems permits us to construct a new method for determining the eigenfrequencies and eigenforms of oscillations of elastic systems and also to suggest a special form of equations for describing the system of motion of rigid bodies. The nonholonomic constraints, the order of which is greater than two, are regarded as programming constraints such that their validity is provided due to the existence of generalized control forces, which are determined as the functions of time. The closed system of differential equations, which makes it possible to find as these control forces, as the generalized Lagrange coordinates, is compound. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics.
The motivation for the workshop on which this book is based was the discovery in recent years of a large number of binary and millisecond radio pulsars, in the galactic disk as well as in globular star clusters, the oldest stellar systems in our galaxy. These discoveries have revolutionized our thinking on many aspects concerning the interior structure and evolution of neutron stars, and have revived the interest in the study of neutron star physics in general. In this book some three dozen of the world's experts in the field of radio pulsars, X-ray binaries, stellar evolution, neutron star interiors and stellar dynamics review the latest observational discoveries as well as the current theoretical thinking on the formation and physics of binary X-ray sources and of the binary and milli-second pulsars. These include discoveries such as that of the elevent millisecond pulsars in the globular cluster 47 Tucanae, the relativistic effects in the new double neturon star system PSR 1534+12 and spectacular results from Germany's ROSAT X-Ray Observatory.
Rapid Prototyping of Application Specific Signal Processors presents leading-edge research that focuses on design methodology, infrastructure support and scalable architectures developed by the 150 million dollar DARPA United States Department of Defense RASSP Program. The contributions to this edited work include an introductory overview chapter that explains the origin, concepts and status of this effort. The RASSP Program is a multi-year DARPA/Tri-Service initiative intended to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are designed, manufactured, upgraded and supported. This program was originally driven by military applications for signal processing. The requirements of military applications for real-time signal processing are typically more demanding than those of commercial applications, but the time gap between technology employed in advanced military prototypes and commercial products is narrowing rapidly. The research on methodologies, infrastructure and architectures presented in this book is applicable to commercial signal processing systems that are in design now, or will be developed before the end of the decade. Rapid Prototyping of Application Specific Signal Processors is a valuable reference for developers of embedded digital systems, particularly systems engineers for signal processing systems (such as digital TV, biomedical image processing systems and telecommunications) and for military contractors who are developing signal processing systems. This book will also be of interest to managers who are charged with responsibility for creating and maintaining environments and infrastructures for developing large embedded digital systems. The chief value for managers will be the defining of methods and processes that reduce development time and cost.
Stabilization of Navier Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader 's task of application easier still.Stabilization of Navier Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular.
|
![]() ![]() You may like...
Classical Mechanics - Pearson New…
Herbert Goldstein, John Safko, …
Paperback
R2,309
Discovery Miles 23 090
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, …
Paperback
R1,529
Discovery Miles 15 290
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Nanofluids and Mass Transfer
Mohammad Reza Rahimpour, Mohammad Amin Makarem, …
Paperback
R4,975
Discovery Miles 49 750
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,675
Discovery Miles 36 750
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,342
Discovery Miles 43 420
|