![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
From the reviews: "The book is excellent, and covers a very broad area (usually treated as separate topics) from a unified perspective. [ ] It will be very useful for both mathematicians and physicists." EMS Newsletter
This graduate level textbook is devoted to understanding, prediction and control of high dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincare s 3-body problem, high-tech Josephson junctions, and more.
This book puts the focus on serving human listeners in the sound field synthesis although the approach can be also exploited in other applications such as underwater acoustics or ultrasonics. The author derives a fundamental formulation based on standard integral equations and the single-layer potential approach is identified as a useful tool in order to derive a general solution. He also proposes extensions to the single-layer potential approach which allow for a derivation of explicit solutions for circular, planar, and linear distributions of secondary sources. Based on above described formulation it is shown that the two established analytical approaches of Wave Field Synthesis and Near-field Compensated Higher Order Ambisonics constitute specific solutions to the general problem which are covered by the single-layer potential solution and its extensions.
Coding and Modulation for Digital Television presents a comprehensive description of all error control coding and digital modulation techniques used in Digital Television (DTV). This book illustrates the relevant elements from the expansive theory of channel coding to how the transmission environment dictates the choice of error control coding and digital modulation schemes. These elements are presented in such a way that both the mathematical integrity' and understanding for engineers' are combined in a complete form and supported by a number of practical examples. In addition, the book contains descriptions of the existing standards and provides a valuable source of corresponding references. Coding and Modulation for Digital Television also features a description of the latest techniques, providing the reader with a glimpse of future digital broadcasting. These include the concepts of soft-in-soft-out decoding, turbo-coding and cross-correlated quadrature modulation, all of which will have a prominent future in improving efficiency of the next generation DTV systems. Coding and Modulation for Digital Television is essential reading for all undergraduate and postgraduate students, broadcasting and communication engineers, researchers, marketing managers, regulatory bodies, governmental organizations and standardization institutions of the digital television industry.
This book is intended as a historical and critical study on the origin of the equations of motion as established in Newton's Principia. The central question that it aims to answer is whether it is indeed correct to ascribe to Galileo the inertia principle and the law of falling bodies. In order to accomplish this task, the study begins by considering theories on the motion of bodies from classical antiquity, and especially those of Aristotle. The theories developed during the Middle Ages and the Renaissance are then reviewed, with careful analysis of the contributions of, for example, the Merton and Parisian Schools and Galileo's immediate predecessors, Tartaglia and Benedetti. Finally, Galileo's work is examined in detail, starting from the early writings. Excerpts from individual works are presented, to allow the texts to speak for themselves, and then commented upon. The book provides historical evidence both for Galileo's dependence on his forerunners and for the major breakthroughs that he achieved. It will satisfy the curiosity of all who wish to know when and why certain laws have been credited to Galileo.
Present developments in materials science, mechanics and engineering, as well as the demands of modern technology, result in a new and growing interest in plasticity and in bordering domains of the mechanical behavior of materials. This growing interest is attested to by the success of both The International Journal of Plasticity, which after its inception rapidly became the leading journal for plasticity research, and the series ofInternational Symposia on Plasticity and Its Current Applications, which is now the premier international forum for plasticity research dissemination. The First International Symposium on Plasticity and Its Current Applications was conceived and organized by Professor Akhtar S. Khan, and was held at the University of Oklahoma (Norman, Oklahoma, USA) from July 30 to August 3, 1984. It was attended by over one hundred scientists from fifteen countries. "Plasticity '89: the Second International Symposium on Plasticity and Its Current Applications" was held at Mie University (Tsu, Japan) from July 31 to August 4, 1989; this symposium was co-chaired by Professors Khan and Tokuda. The main emphasis of this meeting was on dynamic plasticity and micromechanics, although it included other aspects of plasticity as well. It was attended by over two hundred researchers from twenty-three nations.
The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: "Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come." SIAM Review, September 1994 "This book should be on the desk of any researcher, any student, any teacher interested in scattering theory." Mathematical Intelligencer, June 1994"
The use of various types of wave energy is an increasingly promising, non-destructive means of detecting objects and of diagnosing the properties of quite complicated materials. An analysis of this technique requires an understanding of how waves evolve in the medium of interest and how they are scattered by inhomogeneities in the medium. These scattering phenomena can be thought of as arising from some perturbation of a given, known system and they are analysed by developing a scattering theory. This monograph provides an introductory account of scattering phenomena and a guide to the technical requirements for investigating wave scattering problems. It gathers together the principal mathematical topics which are required when dealing with wave propagation and scattering problems, and indicates how to use the material to develop the required solutions. Both potential and target scattering phenomena are investigated and extensions of the theory to the electromagnetic and elastic fields are provided. Throughout, the emphasis is on concepts and results rather than on the fine detail of proof; a bibliography at the end of each chapter points the interested reader to more detailed proofs of the theorems and suggests directions for further reading.Aimed at graduate and postgraduate students and researchers in mathematics and the applied sciences, this book aims to provide the newcomer to the field with a unified, and reasonably self-contained, introduction to an exciting research area and, for the more experienced reader, a source of information and techniques.
Mechanics plays a central role in determining form and function in biology. This holds at the cellular, molecular and tissue scales. At the cellular scale, mechanics in?uences cell adhesion, cytoskeletal dynamics and the traction that the cell can generate on a given substrate. All of these in turn - fect the cellular functions of migration, mitosis, phagocytosis, endocytosis and stem cell differentiation among others. Indeed, if cells do not develop the appropriate stresses, they are unviable and die. These aspects of cell mechanics are frequently used by mainstream biologists, as traditional mechanicians may be surprised to learn. There is a growing view that many functions of the cell are mechanical in nature even though chemical signals play crucial roles in the processes. Free energy barriers control transitions between different conformations of vir- ally every macromolecule including DNA, RNA, the adhesion protein integrin, the motor protein myosin, and the proteins vinculin and talin that link the cytoskeleton to focal adhesions. The strain energy can be a signi?cant component of the total free energy barrier. For binding to take place, the macromolecules need to be in conf- mational states that expose chemical groups without steric hinderance. The kinetics of chemical reactions are therefore strongly in?uenced by the conformational strain energy.
The scientific description of processes involved in the powerful release of energy from high explosive materials remains one of the most complex problems confronting modern science. In spite of fifty years of concentrated research built upon careful and precise experiments and the massive use of modern computers, the problem remains a major challenge. Anatoliy N. Dremin is recognized as perhaps the most innovative contributor to detonation science and this book provides unique insights into the physics, chemistry, and mechanics relevant to initiation and sustenance of detonation processes. The book presents theories, both conventional and unusual, for describing the processes as well as the experimental challenges to theory and modeling. An unusually valuable contribution to modern science, it will be required reading for any serious student of energetic materials and powerful, high-energy processes.
Waves represent a classic topic of study in physics, mathematics, and engineering. Many modern technologies are based on our understanding of waves and their interaction with matter. In the past thirty years there have been some revolutionary developments in the study of waves. The present volume is the only available source which details these developments in a systematic manner, with the aim of reaching a broad audience of non-experts. It is an important resource book for those interested in understanding the physics underlying nanotechnology and mesoscopic phenomena, as well as for bridging the gap between the textbooks and research frontiers in any wave related topic. A special feature of this volume is the treatment of classical and quantum mechanical waves within a unified framework, thus facilitating an understanding of similarities and differences between the two.
Dynamics of Polymeric Liquids, Second Edition Volume 2: Kinetic Theory R. Byron Bird, Charles F. Curtiss, Robert C. Armstrong and Ole Hassager Volume Two deals with the molecular aspects of polymer rheology and fluid dynamics. It is the only book currently available dealing with kinetic theory and its relation to nonlinear rheological properties. Considerable emphasis is given to the connection between kinetic theory results and experimental data. The second edition contains new material on the basis for molecular modeling, the application of phase--space theory to dilute solutions, kinetic theory of melts and melt mixtures, and network theories. 1987 (0 471--80244--1) 450 pp.
A major advantage of a direct digital synthesizer is that its output frequency, phase and amplitude can be precisely and rapidly manipulated under digital processor control. This book was written to find possible applications for radio communication systems.
The need for tsunami research and analysis has grown dramatically following the devastating tsunami of December 2004, which affected Southern Asia. This book pursues a detailed theoretical and mathematical analysis of the fundamentals of tsunamis, especially the evolution and dynamics of tsunamis and other great waves. Of course, it includes specific measurement results from the 2004 tsunami, but the emphasis is on the nature of the waves themselves and their links to nonlinear phenomena.
Welcome to the fourth IFIP workshop on protocols for high speed networks in Vancouver. This workshop follows three very successful workshops held in Ziirich (1989), Palo Alto (1990) and Stockholm (1993) respectively. We received a large number of papers in response to our call for contributions. This year, forty papers were received of which sixteen were presented as full papers and four were presented as poster papers. Although we received many excellent papers the program committee decided to keep the number of full presentations low in order to accommodate more discussion in keeping with the format of a workshop. Many people have contributed to the success of this workshop including the members of the program committee who, with the additional reviewers, helped make the selection of the papers. We are thankful to all the authors of the papers that were submitted. We also thank several organizations which have contributed financially to this workshop, specially NSERC, ASI, CICSR, UBC, MPR Teltech and Newbridge Networks.
This book describes the revolutionary capabilities of new shock fitting algorithms; a great improvement in computational fluid dynamics (CFD) for high-speed numerical simulations. Shock fitting methods provide a solution to the current difficulties and inaccuracies in shock-capturing approaches. This work traces the evolution of shock-fitting methods, from the pioneering methods based on the structured grids (boundary and floating shock-fitting) to recent developments on unstructured grids, illustrating algorithmic details, significant applications and potential developments. Also, to celebrate the centenary birth of the father of shock-fitting techniques, the book also includes a tribute to Gino Moretti, as well as his unpublished manuscript. This book will appeal to professionals, researchers, and graduate students in the field of CFD.
The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a "close talking" headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal."
A reissue of a classic book, intended for undergraduate courses in biophysics, biological physics, physiology, medical physics, and biomedical engineering. This is an introduction to mechanics, with examples and problems from the medical and biological sciences, covering standard topics of kinematics, dynamics, statics, momentum, and feedback, control and stability but with the emphasis on physical and biological systems. The book can be used as a supplement to standard introductory physics courses, as well as for medical schools, medical physics courses, and biology departments. The three volumes combined present all the major topics in physics. Originally published in 1974 from the authors typescript, this reissue will be edited, corrected, typeset, the art redrawn, and an index added, plus a solutions manual will also be available.
This book covers the technology of switching or modulating light in semiconductor optical waveguides. Currently a key function for optical communications systems is the conversion of data from an electrical signal to an optical signal for transmission in very low loss optical fibres and the converse process of optical to electrical conversion the O/E/O data conversion. This conversion between electronic and photonic signals imposes an energy consumption overhead on optical communication systems. So many research workers have been attracted to ultrafast all-optical switching of data in different formats. As a way of introduction to all-optical switching in semiconductor waveguides the book covers the electro-optic effect, electroabsorption and electrorefraction; effects that can be used in semiconductor optical modulation devices. But the book focuses on all-optical switching using second and third order optical nonlinearities in AlGaAs optical waveguides. It covers a variety of device configurations including integrated nonlinear couplers and Mach-Zehnder interferometers. Further, it provides design software in suit of Mathematica notebooks that can be used to explore the device design.
The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Aerospace Engineering, and the Office of International Studies (of the University of Central Florida) for the financial support of the conference. Also, to the Mathematics Department of the University of Central Florida for providing secretarial and administrative assistance. I would like to thank the members of the local organizing committee, Jeanne Blank, Jackie Callahan, John Cannon, Holly Carley, Brad Pyle, Pete Rautenstrauch, and June Wingler for their assistance. Thanks are also due to the conference organizing committee, F. H. Busse, J. R. Cannon, V. Girault, R. H. J. Grimshaw, P. N. Kaloni, V.
This is the first monograph in the theory of p-adic (and more general non-Archimedean) dynamical systems. The theory of such systems is a new intensively developing discipline on the boundary between the theory of dynamical systems, theoretical physics, number theory, algebraic geometry and non-Archimedean analysis. Investigations on p-adic dynamical systems are motivated by physical applications (p-adic string theory, p-adic quantum mechanics and field theory, spin glasses) as well as natural inclination of mathematicians to generalize any theory as much as possible (e.g., to consider dynamics not only in the fields of real and complex numbers, but also in the fields of p-adic numbers). The main part of the book is devoted to discrete dynamical systems: cyclic behavior (especially when p goes to infinity), ergodicity, fuzzy cycles, dynamics in algebraic extensions, conjugate maps, and small denominators. There are also studied p-adic random dynamical system, especially Markovian behavior (depending on p). In 1997 one of the authors proposed to apply p-adic dynamical systems for modeling of cognitive processes. algebraic structure of fields of p-adic numbers, but by their tree-like hierarchical structures. In this book, there is presented a model of probabilistic thinking on p-adic mental space based on ultrametric diffusion. There are also studied p-adic neural network and their applications to cognitive sciences: learning algorithms, memory recalling. Finally, there are considered wavelets on general ultrametric spaces, developed corresponding calculus of pseudo-differential operators and considered cognitive applications. This book will be of interest to mathematicians working in the theory of dynamical systems, number theory, algebraic geometry, non-Archimedean analysis as well as general functional analysis, theory of pseudo-differential operators; physicists working in string theory, quantum mechanics, field theory, spin glasses; psychologists and other scientists working in cognitive sciences and even mathematically oriented philosophers.
This text describes computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. Included in the two-dimensional program are Maxwell's equations, and thermal and radiation diffusion. The numerical procedures described in the text permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.
At the opening of the "Third Meeting on Celestial Mechanics - CELMEC III", strong sensations hit our minds. The conference (18-22 June 2001) was being held in Villa Mondragone, a beautiful complex of buildings and gardens located within the township of Monte Porzio Catone, on the hills surrounding Rome. A former papal residence, the building has been recently restored by the University of Rome "Tor Vergata" to host academic activities and events. The conference room is called "Salone degli Svizzeri": here, Gregory XIII, on February 24, 1582, gave its sanction to the reform of the Julian calendar and declared officially in use the calendar still adopted nowadays. The magnificent high walls and tall ceiling strongly resounded, giving to our voice a peculiar Vatican sound, which took us by surprise. May be - we thought - a distant echo of the very words of Gregory XIII proclaiming the modem calendar was still haunting the room. Around us, in the audience, many countries were represented, thus indicating that the idea of putting together the three "souls" of modem Celestial Mechanics - perturbation theories, solar and stellar system studies, spaceflight dynamic- had been successful. CELMEC III is in fact the latest of a series of meetings (the first two editions took place in 1993 and 1997 in L' Aquila, Italy) whose aim is to establish a common ground among people working in Celestial Mechanics, yet belonging to different institutions such as universities, astronomical observatories, research institutes, space agencies and industries. |
You may like...
Proceedings of 14th International…
Andrey Ronzhin, Vladislav Shishlakov
Hardcover
R5,310
Discovery Miles 53 100
Analysis and Design of Networks-on-Chip…
Rabab Ezz-Eldin, Magdy Ali El-Moursy, …
Hardcover
R3,246
Discovery Miles 32 460
|