Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Classical mechanics
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman's characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac's famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: ..". a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics." (American Mathematical Society, 1993) "Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations." (CHOICE, 1993) ..". his talent in choosing the most significant results and ordering them within the book can't be denied. The reading of the book is, really, a pleasure." (Dutch Mathematical Society, 1993) "
Wave motion in water is one of the most striking observable
phenomena in nature. Throughout the twentieth century, development
of the linearized theory of wave motion in fluids and hydrodynamic
stability has been steady and significant. In the last three
decades there have been remarkable developments in nonlinear
dispersive waves in general, nonlinear water waves in particular,
and nonlinear instability phenomena. New solutions are now
available for waves modulatedin both space and time, which exhibit
new phenomena as diverse as solitons, resonant interactions,
side-band instability, and wave-breaking. Other achievements
include the discovery of soliton interactions, and the Inverse
Scattering Transform method forfinding the explicit exact solution
for several canonical nonlinear partial differential
equations.
The summer school held in Portovenere followed a tutorial format with the purpose of familiarizing postdoctoral or postgraduate students in the basic theories and up-to-date applications of present knowledge. Although, from a teaching point of view, a certain areount of overlapping is always useful, in order to avoid excessive duplication direct contact between lecturers expert in the same subject was encouraged during the preparation phase. In recent years computer facilities and theoretical implementa tion have considerably increased the possibility of solving problems relating to signal detection in noise. Any type of communication may take advantage of signal processing principles, including any type of physical measurement that can be considered as a non-semantic and/or quasi-semantic communication. Since signal processing techniques are common to many branches of science (telecommunications, radar, sonar, seismology, geophysics, nuclear research, space research and others), the advanced and sophisticated levels reached singularly in anyone of them could be used to the advantage of the others. In particular, underwater acoustics is a discipline which, to some extent, represents a practical general model that has permitted the development of signal processing techniques suitable to meet data reduction and interpretation needs of other branches of science. This ASI consequently underlined the inter-disciplinarity of signal proces sing in order that the principles of outstanding methods developed in one field may be adapted to others."
The book presents a comprehensive overview of the current state-of-the-art in the atmospheric boundary layer (ABL) research. It focuses on experimental ABL research, while most of the books on ABL discuss it from a theoretical or fluid dynamics point of view. Experimental ABL research has been made so far by surface-based in-situ experimentation (tower measurements up to a few hundred meters, surface energy balance measurements, short aircraft experiments, short experiments with tethered balloons, constant-level balloons, evaluation of radiosonde data). Surface flux measurements are also discussed in the book. Although the surface fluxes are one of the main driving factors for the daily variation of the ABL, an ABL description is only complete if its vertical structure is analyzed and determined. Satellite information is available covering large areas, but it has only limited temporal resolution and lacks sufficient vertical resolution. Therefore, surface-based remote sensing is a large challenge to enlarge the database for ABL studies, as it offers nearly continuous and vertically highly resolved information for specific sites of interest. Considerable progress has been made in the recent years in studying of ground-based remote sensing of the ABL. The book discusses such new subjects as micro-rain radars and the use of ceilometers for ABL profiling, modern small wind lidars for wind energy applications, ABL flux profile measurements, RASS techniques, and mixing-layer height determination.
We are witnessing an ever-increasing thrust toward the era of multimedia information networks, largely spurred by the U.S. Government's proposal for the National Information Infrastructure in the fall of 1993. While more people are subscribing to the services of narrowband ISDN, the implementation of broadband ISDN by means of Asynchronous Transfer Mode (ATM) has accelerated since the formation of the ATM Forum in 1993. In the meantime, frame relay may prevail for inter-LAN connections. In the "upper layer" of the network, commercial use of Internet is rapidly emerging. To ensure the successful development of technology, it is vital to use a judicious approach in assessing the architecture and performance of the systems that implement the technology. It is this spirit that underlies the present conference, which is intended to provide an international forum for the presentation of recent research results in the area of local and metropolitan communication systems. This conference has two sets of predecessors. It is the third in a series of international conferences on Local and Metropolitan Communication Systems -LAN & MAN; the first was held in Toulouse in 1986 and the second in Palma de Mallorca in 1991. It is also the fourth in a triennial series organized by Kyoto University and others on the performance of communication-related systems; the previous ones were held in Tokyo (1985) and Kyoto (1988, 1991).
Modern computational techniques, such as the Finite Element Method, have, since their development several decades ago, successfully exploited continuum theories for numerous applications in science and technology. Although standard continuum methods based upon the Cauchy-Boltzmann continuum are still of great importance and are widely used, it increasingly appears that material properties stemming from microstructural phenomena have to be considered. This is particularly true for inhomogeneous load and deformation states, where lower-scale size effects begin to affect the macroscopic material response; something standard continuum theories fail to account for. Following this idea, it is evident that standard continuum mechanics has to be augmented to capture lower-scale structural and compositional phenomena, and to make this information accessible to macroscopic numerical simulations.
This textbook provides details of the derivation of Lagrange's planetary equations and of the closely related Gauss's variational equations, thereby covering a sorely needed topic in existing literature. Analytical solutions can help verify the results of numerical work, giving one confidence that his or her analysis is correct. The authors-all experienced experts in astrodynamics and space missions-take on the massive derivation problem step by step in order to help readers identify and understand possible analytical solutions in their own endeavors. The stages are elementary yet rigorous; suggested student research project topics are provided. After deriving the variational equations, the authors apply them to many interesting problems, including the Earth-Moon system, the effect of an oblate planet, the perturbation of Mercury's orbit due to General Relativity, and the perturbation due to atmospheric drag. Along the way, they introduce several useful techniques such as averaging, Poincare's method of small parameters, and variation of parameters. In the end, this textbook will help students, practicing engineers, and professionals across the fields of astrodynamics, astronomy, dynamics, physics, planetary science, spacecraft missions, and others. "An extensive, detailed, yet still easy-to-follow presentation of the field of orbital perturbations." - Prof. Hanspeter Schaub, Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder "This book, based on decades of teaching experience, is an invaluable resource for aerospace engineering students and practitioners alike who need an in-depth understanding of the equations they use." - Dr. Jean Albert Kechichian, The Aerospace Corporation, Retired "Today we look at perturbations through the lens of the modern computer. But knowing the why and the how is equally important. In this well organized and thorough compendium of equations and derivations, the authors bring some of the relevant gems from the past back into the contemporary literature." - Dr. David A Vallado, Senior Research Astrodynamicist, COMSPOC "The book presentation is with the thoroughness that one always sees with these authors. Their theoretical development is followed with a set of Earth orbiting and Solar System examples demonstrating the application of Lagrange's planetary equations for systems with both conservative and nonconservative forces, some of which are not seen in orbital mechanics books." - Prof. Kyle T. Alfriend, University Distinguished Professor, Texas A&M University
This thesis focuses on the manipulation of sound properties by artificial materials. It elaborates on the fundamental design of acoustic metasurfaces and metastructures as the extension of metamaterials, and their functionality in the manipulation of sound properties. A broad and comprehensive guideline of designing acoustic metasurfaces and metastructures is also provided. Based on the proposed subwavelength metasurfaces and the metastructures with a simplified layout, multiple potential applications are demonstrated. This thesis will appeal to acoustic engineers and researchers who are interested in designing acoustic artificial structures.
Provides comprehensive coverage of recent advances in combustion technology Explains definite concepts about the design and development in combustion systems Captures developments relevant for aerospace area including gel propellant, aluminium based propellants, gasification and gas turbine Aims to introduce the combustion system in different industries Expounds novel combustion systems with reference to pertinent renewable technologies
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
The Dynamics program and handbook allows the reader to explore nonlinear dynamics and chaos by the use of illustrated graphics. It is suitable for research and educational needs. This new edition allows the program = to run 3 times faster on the processes that are time consuming. Other major changes include: 1. There will be an add-your-own equation facility. This means it = will be unnecessary to have a compiler. PD and Lyanpunov exponents and Newton method for finding periodic orbits can all be carried out numerically without adding specific code for partial derivatives. 2. The program will support color postscript. 3. New menu system in which the user is prompted by options when a command is chosen. This means that the program is much easier to learn and to remember in comparison to current version. 4. Mouse support is added. 5. The program will be able to use the expanded memory available on modern PC's. This means pictures will be higher resolution. There are also many minor chan ce much of the source code will be available on the web, although some of ges such as zoom facility and help facility.=20 6. Due to limited spa it willr emain on the disk so that the unix users still have to purchase the book. This will allow minor upgrades for Unix users.
Energy Dissipation in Molecular Systems analyzes experimental data on the redistribution and dissipation of energy injected into molecular systems by radiation or charged particles. These processes, competing with such practically important relaxation channels as chemical reaction or stimulated emission (laser action), are the primary focus in this monograph. Among other topics, the book treats vibrational redistribution and electronic relaxation in isolated molecules and the effects of inter-molecular interactions (collisions, complex formation, solvent effects) on the relaxation paths. Primary photo-chemical processes (such as isomerization, proton or hydrogen-atom transfer, electron transfer and ionization) are also treated as particular cases of vibrational or electronic relaxation. Only a basic knowledge of quantum mechanics and spectroscopy is assumed and calculations are kept to a strict minimum, making the book more accessible to students.
1. Uses practical industry examples to illustrate key concepts of mechanics and stress analysis 2. Includes worked examples and MATHCAD programs 3. Presents the theory behind stress analysis with reference to multiple disciplines, making this a comprehensive book 4. Covers composite material stress analysis, plate analysis and Finite Element Method
th Coinciding with the 300 anniversary of the publication of Newton's Principia The International Astronomical Union organized the colloquium No. 96 "The Few Body Problem" in Turku, Finland, June 14.-19.1987. It provided an opportunity to review the progress in the very field which caused Newton a headache, as Victor Szebehely reminded the audience in his introductory remarks. It is a measure of the difficulty and complication of the few body problem that even after 300 years so many aspects of the problem are still unsolved. To quote Szebehely again, "Sir Isaac established the rules, Poincare presented the challenges." Many of these challenges are reviewed in the present proceedings. The gravitational few body problem cuts across the borders of established disciplines. The participants of the colloquium came from departments as different as Aerospace Engineering, Astronomy, Theoretical Physics, Physics, Mathematics, Applied Mathematics, Computer Science, Planetology, Geodesy, Celestial Mechanics and Space Science. The few body problem is a problem of practical significance in many fields and the main aim of the colloquium was to bring together people with research interests in this area, many of whom normally attend different conferences.
This volume contains the detailed text of the major lectures and the abstracts of the lectures delivered during the seminar sessions. The subject of our NATO Advanced Study Institute in 1981 was the Application of Modern Dynamics to Celestial Mechanics and Astrodynamics. This Preface will first explain the terminology, then it will review shortly the content of the lectures and will outline how all this was made possible and, finally, it will disclose our future aspirations. Periodicity is an extremely important concept in our field, therefore, it should not be unexpected that our NATO Advanced Study Institute is enjoying a period of three years. Since 1972 we conducted four Institutes with increasing interest and en thusiasm displayed by the participants, lecturers and by this Director. Celestial Mechanics or Dynamical Astronomy is part of Astronomy dealing mostly with the motion of natural celestial bodies. Astrodynamics or Orbital Mechanics is the application of dynamics to problems of Space Engineering and it treats mostly the dynamical behavior of artificial satellites and space probes. The underlying mathematical and dynamical principles are, of course, the same for Celestial Mechanics and for Astrodynamics. This Director of the Institute and Editor of the Proceedings was extremely fortunate to have obtained the cooperation of out standing lecturers who were clear, thorough, understandable, patient to answer questions, but above all, had knowledge of the ix V. Szebehely (ed.). Applications of Modern Dynamics to Celestial Mechanics and Astrodynamics. ix-x."
This newly-translated book takes the reader from the basic principles and conservation laws of hydrodynamics to the description of general atmospheric circulation. Among the topics covered are the Kelvin, Ertel and Rossby-Obukhov invariants, quasi-geostrophic equation, thermal wind, singular Helmholtz vortices, derivation of the Navier-Stokes equation, Kolmogorov's flow, hydrodynamic stability, and geophysical boundary layers. Generalizing V. Arnold's approach to hydrodynamics, the author ingeniously brings in an analogy of Coriolis forces acting on fluid with motion of the Euler heavy top and shows how this is used in the analysis of general atmospheric circulation. This book is based on popular graduate and undergraduate courses given by F.V.Dolzhansky at the Moscow Institute of Physics and Technology, and is the result of the author's highly acclaimed work in Moscow's Laboratory of Geophysical Hydrodynamics. Each chapter is full of examples and figures, exercises and hints, motivating and illustrating both theoretical and experimental results. The exposition is comprehensive yet user-friendly in engaging and exploring the broad range of topics for students and researchers in mathematics, physics, meteorology and engineering. "
This book presents a mechatronic approach to Active Noise Control (ANC). It describes the required elements of system theory, engineering acoustics, electroacoustics and adaptive signal processing in a comprehensive, consistent and systematic manner using a unified notation. Furthermore, it includes a design methodology for ANC-systems, explains its application and describes tools to be used for ANC-system design. From the research point of view, the book presents new approaches to sound source localization in weakly damped interiors. One is based on the inverse finite element method, the other is based on a sound intensity probe with an active free field. Furthermore, a prototype of an ANC-system able to reach the physical limits of local (feed-forward) ANC is described. This is one example for applied research in ANC-system design. Other examples are given for (i) local ANC in a semi-enclosed subspace of an aircraft cargo hold and (ii) for the combination of audio entertainment with ANC.
The book reports on advanced solutions to the problem of simulating wing and nacelle stall, as presented and discussed by internationally recognized researchers at the Closing Symposium of the DFG Research Unit FOR 1066. Reliable simulations of flow separation on airfoils, wings and powered engine nacelles at high Reynolds numbers represent great challenges in defining suitable mathematical models, computing numerically accurate solutions and providing comprehensive experimental data for the validation of numerical simulations. Additional problems arise from the need to consider airframe-engine interactions and inhomogeneous onset flow conditions, as real aircraft operate in atmospheric environments with often-large distortions. The findings of fundamental and applied research into these and other related issues are reported in detail in this book, which targets all readers, academics and professionals alike, interested in the development of advanced computational fluid dynamics modeling for the simulation of complex aircraft flows with flow separation.
This volume contains the proceedings of the 2000 International Congress of Theoretical and Applied Mechanics. The book captures a snapshot view of the state of the art in the field of mechanics and will be invaluable to engineers and scientists from a variety of disciplines.
This book reports on the German research initiative AeroStruct, a three-year collaborative project between universities and the aircraft industry. It describes the development of an integrated multidisciplinary simulation environment for aircraft analysis and optimization using high-fidelity methods. This system is able to run at a high level of automatism, thus representing a step forward with respect to previous ones. Its special features are: a CAD description that is independent from the disciplines involved, an automated CFD mesh generation and an automated structure model generation including a sizing process. The book also reports on test cases by both industrial partners and DLR demonstrating the advantages of the new environment and its suitability for the industry. These results were also discussed during the AeroStruct closing Symposium, which took place on 13-14 October 2015 at the DLR in Braunschweig, Germany. The book provides expert readers with a timely report on multidisciplinary aircraft design and optimization. Thanks to a good balance between theory and practice, it is expected to address an audience of both academics and professional, and to offer them new ideas for future research and development.
Physically correct boundary conditions on vapor-liquid interfaces are essential in order to make an analysis of flows of a liquid including bubbles or of a gas including droplets. Suitable boundary conditions do not exist at the present time. This book is concerned with the kinetic boundary condition for both the plane and curved vapor-liquid interfaces, and the fluid dynamics boundary condition for Navier-Stokes(fluid dynamics) equations. The kinetic boundary condition is formulated on the basis of molecular dynamics simulations and the fluid dynamics boundary condition is derived by a perturbation analysis of Gaussian-BGK Boltzmann equation applicable to polyatomic gases. The fluid dynamics boundary condition is applied to actual flow problems of bubbles in a liquid and droplets in a gas.
This book uses the Lagrangian approach, especially useful and convenient for studying large-scale transport and mixing in the ocean, to present a detailed view of ocean circulation. This approach focuses on simulations and on monitoring the trajectories of fluid particles, which are governed by advection equations. The first chapter of the book is devoted to dynamical systems theory methods, which provide the framework, methodology and key concepts for the Lagrangian approach. The book then moves on to an analysis of chaotic mixing and cross-stream transport in idealized models of oceanic meandering currents like the Gulfstream in the Atlantic, the Kuroshio in the Pacific, and Antarctic Circumpolar Current, after which the current state of physical oceanography is reviewed. The latter half of the book applies the techniques and methods already described in order to study eddies, currents, fronts and large-scale mixing and transport in the Far-Eastern seas and the north-western part of the Pacific Ocean. Finally, the book concludes with a discussion of Lagrangian simulation and monitoring of water contamination after the Fukushima disaster of 2011. The propagation of Fukushima-derived radionuclides, surface transport across the Kuroshio Extension current, and the role of mesoscale eddies in the transport of Fukushima-derived cesium isotopes in the ocean are examined, and a comparison of simulation results with actual measurements are presented.Written by some of the world leaders in the application of Lagrangian methods in oceanography, this title will be of benefit to the oceanographic community by presenting the necessary background of the Lagrangian approach in an accessible manner.
This book presents novel design principles and technologies for dynamic isolation based on experimental studies. These approaches have now become the local standard in Beijing and are currently being promoted for use nationwide. Further, the book provides details of measures and guidelines for the design process. Departing from the traditional understanding that isolation wards should be designed with high negative pressure, airtight doors and fresh air, it establishes the basis for designing biological clean rooms, including isolation wards, using a simple and convenient scientific approach. This book is intended for designers, engineers, researchers, hospital management staff and graduate students in heating ventilation air conditioning (HVAC), air cleaning technologies and related areas.
To place this book in perspective it is useful for the reader to be aware of the recent history of the topic of underwater sound generation at the ocean surface by natural mechanisms. A meeting in Lerici, Italy in 1987 was convened within the NATO Advanced Research Workshop series, to bring together underwater acousticians and ocean hydrodynamicists to examine various mechanisms which generate sound naturally at the ocean surface. A record of that meeting was published in the NATO scientific publication series in 1988 under the title 'Sea Surface Sound'. That meeting was successful in inspiring and co ordinating both participants and non-attending colleagues to examine some key issues which were raised during the course of presentations and discussions. The understanding among those present was that another meeting should be convened 3 years hence to report and review progress in the subject. Accordingly the second conference was convened in Cambridge in 1990, whose proceedings are presented here. This volume represents a very gratifying increase in only a 3 year interval in our understanding of a number of physical processes which generate sound at the peripheries of oceans. In fact it represents both the acceleration of singular effort as well as the development of interdisciplinary sophistication and co-operation. The enthusiasm, goodwill, and intense scientific curiosity which characterized the Lerici meeting carried through to Cambridge. The collegial atmosphere established by the participants was perfectly timed to foster another major advance in studies of ocean surface sound.
The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory. |
You may like...
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R882
Discovery Miles 8 820
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,256
Discovery Miles 62 560
Solving Problems in Fluid Mechanics…
J.F. Douglas, R D Matthews
Paperback
R2,435
Discovery Miles 24 350
Friction, Lubrication and Wear
Mohammad Asaduzzaman Chowdhury
Hardcover
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,560
Discovery Miles 55 600
Kinematics - Analysis and Applications
Joseph Mizrahi
Hardcover
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Paperback
R886
Discovery Miles 8 860
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, …
Paperback
R1,463
Discovery Miles 14 630
|