![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
On September 15, 2017, the Cassini spacecraft sent its final transmission to the Earth as it entered the atmosphere of Saturn, ending its historic 13 year mission at the ringed planet. This book is a beautifully illustrated journey of discovery through the Saturn system. Cassini's instruments have revealed never seen before details, including the only extraterrestrial lakes known in the solar system, and have provided unprecedented views of the rings, moons, and the planet itself. Results from Cassini's dramatic Grand Finale of ring-grazing and planet-skimming orbits are included in this expanded and updated second edition. Saturn is the jewel of the solar system. The Cassini spacecraft has been exploring the ringed planet and its moons and rings since 2004 and has helped us solve many of its mysteries while generating a wealth of new questions. Cassini has observed the bizarre mountains of Iapetus, the geysers of Enceladus, the lakes of Titan, and the dynamic and evolving rings. Along the way, this book explores and explains the fundamental processes that shape not just the Saturn system, but planets and moons in general. Written for the general audience with an emphasis on the fundamental physics of planetary systems, The Ringed Planet is a fascinating exploration of the Saturn system that places Saturn in the context of the solar system as a whole. Cassini's instruments have revealed Enceladus and Titan to have subsurface oceans of liquid water. Its cameras have returned stunning images of rings in turmoil, a tumbling moon, the only extraterrestrial lakes known in the solar system, a hexagon of clouds, some of the highest mountains in the solar system and much more. More than a journey of discovery at Saturn, The Ringed Planet is also an introduction to how planetary systems work.
This book presents new insights into Leibniz's research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler's influence on Leibniz's planetary theory and more generally, on Leibniz's concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz's works provide a frame of reference. The book then goes on to discuss research on Leibniz's conception of gravity and the connection between Leibniz and Kepler.
This book is a collection of papers presented at a symposium held in honor of Sidney Leibovich. According all papers deal with mathematical or computational aspects of fluid dynamics applied mostly to atmospheric or oceanographic problems. All contributions are research papers having not only the specialist but also graduate students in mind.
The present Volume 4 of the successful monograh package Multiphase Flow Dynamics is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift force, the lubrication force in the wall boundary layer, and the dispersion force. A pragmatic generalization of the k-eps models for continuous velocity field is proposed containing flows in large volumes and flows in porous structures. A Methods of how to derive source and sinks terms for multiphase k-eps models is presented. A set of 13 single- and two phase benchmarks for verification of k-eps models in system computer codes are provided and reproduced with the IVA computer code as an example of the application of the theory. This methodology is intended to help other engineers and scientists to introduce this technology step-by-step in their own engineering practice. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections.
What is Dynamics about? In broad terms, the goal of Dynamics is to describe the long term evolution of systems for which an "infinitesimal" evolution rule is known. Examples and applications arise from all branches of science and technology, like physics, chemistry, economics, ecology, communications, biology, computer science, or meteorology, to mention just a few. These systems have in common the fact that each possible state may be described by a finite (or infinite) number of observable quantities, like position, velocity, temperature, concentration, population density, and the like. Thus, m the space of states (phase space) is a subset M of an Euclidean space M . Usually, there are some constraints between these quantities: for instance, for ideal gases pressure times volume must be proportional to temperature. Then the space M is often a manifold, an n-dimensional surface for some n < m. For continuous time systems, the evolution rule may be a differential eq- tion: to each state x G M one associates the speed and direction in which the system is going to evolve from that state. This corresponds to a vector field X(x) in the phase space. Assuming the vector field is sufficiently regular, for instance continuously differentiable, there exists a unique curve tangent to X at every point and passing through x: we call it the orbit of x.
The feasibility to extract porous medium parameters from acoustic
recordings is investigated. The thesis gives an excellent
discussion of our basic understanding of different wave modes,
using a full-waveform and multi-component approach. Focus lies on
the dependency on porosity and permeability where especially the
latter is difficult to estimate. In this thesis, this sensitivity
is shown for interface-wave and reflected-wave modes. For each of
the pseudo-Rayleigh and pseudo-Stoneley interface waves unique
estimates for permeability and porosity can be obtained when
impedance and attenuation are combined.
This volume presents a carefully written introduction to nonlinear waves in the natural sciences and engineering. It contains many classical results as well as more recent results, dealing with topics such as the forced Korteweg--de Vries equation and material relating to X-ray crystallography. The volume contains nine chapters. Chapter 1 concerns asymptotics and nonlinear ordinary differential equations. Conservation laws are discussed in Chapter 2, and Chapter 3 considers water waves. The scattering and inverse scattering method is described in Chapter 4, which also contains a full explanation of using the inverse scattering method for finding 1-, 2- and 3-soliton solutions of the Korteweg--de Vries equation. After dealing with the Burgers equation in Chapter 5, Chapter 6 discusses the forced Korteweg--de Vries equations. Here the emphasis is on steady-state bifurcations and unsteady-state periodic soliton generation. The Sine--Gordon and nonlinear SchrAdinger equations are the subject of Chapter 7. The final two chapters consider wave instability and resonance. Every chapter contains problems and exercises, together with guidance for their solution. The volume concludes with some appendices which describe symbolic derivations of certain results on solitons. Several user-friendly MATHEMATICA packages are included. The prerequisite for using this book is a background knowledge of basic physics, linear algebra and differential equations. For graduates and researchers in mathematics, physics and engineering wishing to have a good introduction to nonlinear wave theory and its applications. This volume is also highly recommended as a course book.
This book constitutes the first single-volume, English-language treatise on electromagnetic wave propagation across the frequency spectrum.
This book focuses on the way in which the problem of the motion of bodies has been viewed and approached over the course of human history. It is not another traditional history of mechanics but rather aims to enable the reader to fully understand the deeper ideas that inspired men, first in attempting to understand the mechanisms of motion and then in formulating theories with predictive as well as explanatory value. Given this objective, certain parts of the history of mechanics are neglected, such as fluid mechanics, statics and astronomy after Newton. On the other hand, due attention is paid, for example, to the history of thermodynamics, which has its own particular point of view on motion. Inspired in part by historical epistemology, the book examines the various views and theories of a given historical period (synchronic analysis) and then makes comparisons between different periods (diachronic analysis). In each period, one or two of the most meaningful contributions are selected for particular attention, instead of presenting a long inventory of scientific achievements.
Papers of the Paris meeting in June 1990 on Local Group Galaxies, molecules in early-type galaxies, observations of spiral structure in molecular clouds, a comparison with other gaseous components and IR emission, interacting galaxies and starbursts, gas and star dynamics, galaxy evolution, IRAS ult
One of the most intriguing questions in image processing is the problem of recovering the desired or perfect image from a degraded version. In many instances one has the feeling that the degradations in the image are such that relevant information is close to being recognizable, if only the image could be sharpened just a little. This monograph discusses the two essential steps by which this can be achieved, namely the topics of image identification and restoration. More specifically the goal of image identifi cation is to estimate the properties of the imperfect imaging system (blur) from the observed degraded image, together with some (statistical) char acteristics of the noise and the original (uncorrupted) image. On the basis of these properties the image restoration process computes an estimate of the original image. Although there are many textbooks addressing the image identification and restoration problem in a general image processing setting, there are hardly any texts which give an indepth treatment of the state-of-the-art in this field. This monograph discusses iterative procedures for identifying and restoring images which have been degraded by a linear spatially invari ant blur and additive white observation noise. As opposed to non-iterative methods, iterative schemes are able to solve the image restoration problem when formulated as a constrained and spatially variant optimization prob In this way restoration results can be obtained which outperform the lem. results of conventional restoration filters."
Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.
This thesis transports you to a wonderful and fascinating small-scale world and tells you the origin of several new phenomena. The investigative tool is the improved discrete dislocation-based multi-scale approaches, bridging the continuum modeling and atomistic simulation. Mechanism-based theoretical models are put forward to conveniently predict the mechanical responses and defect evolution. The findings presented in this thesis yield valuable new guidelines for microdevice design, reliability analysis and defect tuning.
This volume of proceedings contains the papers from the third in a successful series of conferences organized by the Deutscher Verband fur Materialforschung undprufung DVM]. The purpose of the conference was to review methods of improving the performance of materials and structures and to extend working life, especially under complex loading conditions such as environmental attack and high temperature degradation as well as providing a comprehensive evaluation of recent progress in low cycle fatigue and elasto-plastic behaviour of materials. Safe design and effective operation of highly stressed structures rely on the extensive use of mechanical approaches and micromechanics analysis to predict the deformation and fracture response of materials in service. Because of the need to create greater confidence in the engineering world in advanced materials as efficient replacements for conventional materials, many of the papers emphasize the role of new materials and emerging technology.
In the last quarter century, delamination has come to mean more than just a failure in adhesion between layers of bonded composite plies that might affect their load-bearing capacity. Ever-increasing computer power has meant that we can now detect and analyze delamination between, for example, cell walls in solid wood. This fast-moving and critically important field of study is covered in a book that provides everyone from manufacturers to research scientists the state of the art in wood delamination studies. Divided into three sections, the book first details the general aspects of the subject, from basic information including terminology, to the theoretical basis for the evaluation of delamination. A settled terminology in this subject area is a first key goal of the book, as the terms which describe delamination in wood and wood-based composites are numerous and often confusing. The second section examines different and highly specialized methods for delamination detection such as confocal laser scanning microscopy, light microscopy, scanning electron microscopy and ultrasonics. Ways in which NDE (non-destructive evaluation) can be employed to detect and locate defects are also covered. The book's final section focuses on the practical aspects of this defect in a wide range of wood products covering the spectrum from trees, logs, laminated panels and glued laminated timbers to parquet floors. Intended as a primary reference, this book covers everything from the microscopic, anatomical level of delamination within solid wood sections to an examination of the interface of wood and its surface coatings. It provides readers with the perspective of industry as well as laboratory and is thus a highly practical sourcebook for wood engineers working in manufacturing as well as a comprehensively referenced text for materials scientists wrestling with the theory underlying the subject.
The first part aims at providing the physical and theoretical
framework of the analysis of density variations in fully turbulent
flows. Its scope is deliberately educational.
Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of theoretical and computational fluid mechanics.
Among the many books on Galileo Galilei only very few deal directly and in depth with his scientific accomplishments proper. This is one of them and among the correspondingly sparse literature the author of this work distinguishes himself by focusing on mechanics, in particular on the fundamental concept of motion and percussion - having performed crucial original experiments and in Galileos spirit. Indeed, while the author lets Galilei speak for himself when he explains his experiments and findings, he also makes full use of our present day knowledge of physics to make the reader better understand the perspective. The result of this very fine understanding is an unsurpassingly authoritative account on some of the foundations of preclassical mechanics as laid down by the great Pisan scientist, widely regarded as the first experimental physicist in the modern sense. This book will not only be an indispensable source of reference for historians of sciences but appeal to anyone interested in the foundations of experimental physics in general and of mechanics in particular."
This volume collects the papers from the 2013 World Conference on Acoustic Emission in Shanghai. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.
This book introduces readers to the lattice Boltzmann method (LBM) for solving transport phenomena - flow, heat and mass transfer - in a systematic way. Providing explanatory computer codes throughout the book, the author guides readers through many practical examples, such as: * flow in isothermal and non-isothermal lid-driven cavities; * flow over obstacles; * forced flow through a heated channel; * conjugate forced convection; and * natural convection. Diffusion and advection-diffusion equations are discussed, together with applications and examples, and complete computer codes accompany the sections on single and multi-relaxation-time methods. The codes are written in MatLab. However, the codes are written in a way that can be easily converted to other languages, such as FORTRANm Python, Julia, etc. The codes can also be extended with little effort to multi-phase and multi-physics, provided the physics of the respective problem are known. The second edition of this book adds new chapters, and includes new theory and applications. It discusses a wealth of practical examples, and explains LBM in connection with various engineering topics, especially the transport of mass, momentum, energy and molecular species. This book offers a useful and easy-to-follow guide for readers with some prior experience with advanced mathematics and physics, and will be of interest to all researchers and other readers who wish to learn how to apply LBM to engineering and industrial problems. It can also be used as a textbook for advanced undergraduate or graduate courses on computational transport phenomena
IAU Symposium 172 Dynamics, Ephemerides and Astrometry of the Solar System was held in Paris in July, 1995. 250 scientists from 33 countries attended the symposium; 24 invited lectures and 165 contributed papers were presented (117 of which were posters). The papers covered topics on celestial mechanics (chaos and evolution of the solar system, asteroids, theories of the motion of the planets, the moon and the natural satellites), methods (symplectic mappings and elliptic functions), astrometry (CCD observations, VLBI and radar observations), ephemerides (representation and numerical integration) and on the history of celestial mechanics.
Psychoacoustics a" Facts and Models offers a unique, comprehensive summary of information describing the processing of sound by the human hearing system. It includes quantitative relations between sound stimuli and auditory perception in terms of hearing sensations, for which quantitative models are given, as well as an unequalled collection of data on the human hearing system as a receiver of acoustic information. In addition, many examples of the practical application of the results of basic research in fields such as noise control, audiology, or sound quality engineering are detailed. The third edition includes an additional chapter on audio-visual interactions and applications, plus more on applications throughout. Acoustic demonstrations on a CD included with this edition further illustrate and amplify basic and applied psychoacoustic phenomena. Reviews of previous editions have characterized it as "an essential source of psychoacoustic knowledge," "a major landmark," and a book that "without doubt will have a long-lasting effect on the standing and future evolution of this scientific domain." |
![]() ![]() You may like...
Hyperbolic Problems: Theory, Numerics…
Heinrich Freistuhler, Gerald Warnecke
Hardcover
R3,318
Discovery Miles 33 180
Mathematical Fluid Mechanics - Recent…
Jiri Neustupa, Patrick Penel
Hardcover
R3,189
Discovery Miles 31 890
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R3,162
Discovery Miles 31 620
Oscillation Theory of Delay Differential…
I. Gyoeri, G. Ladas
Hardcover
R5,354
Discovery Miles 53 540
|