Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Classical mechanics
In this book of reminiscences, this prize-winning Russian physicist presents a sweeping discourse on scientific achievement from the thirties to the present day. On the basis of his own work and that of leading international scientists such as P. L. Kapitza, L. Landau, R. Feynman and J. Bardeen, the author recounts the establishment and development of the superfluidity of liquid helium and quantum hydrodynamics. In an interesting and readable style, E. L. Andronikashvili speaks of the scientific quest and the human interrelationships that accompany scientific creativity. For historians of science and physicists.
Parallel CFD 2008, the twentieth in the high-level international series of meetings featuring different aspect of parallel computing in computational?uid dynamics and other modern scienti?c domains was held May 19?22, 2008 in Lyon, France. The themes of the 2008 meeting included the traditional emphases of this c- ference, and experiences with contemporary architectures. Around 70 presentations were included into the conference program in the following sessions: Parallel Algorithms and solvers Parallel performances with contemporary architectures Structured and unstructured grid methods, boundary methods software framework and components architecture CFD applications(Bio ?uid, environmentalproblem)Lattice Boltzmannmethodand SPH Optimisation in Aerodynamics This book presents an up-to-date overviewof the state of the art in Parallel C- putational Fluid Dynamics from Asia, Europe, and North America. This reviewed proceedingsincluded about sixty percent of the oral lectures presented at the conf- ence. The editors. VI Preface Parallel CFD 2008 was organized by the Institut Camille Jordan of the Univ- sity of Lyon 1 in collaboration with the Center for the Development of the Parallel Scienti?c Computing. The Scienti?c Committee and Local Organizers of Parallel CFD 2008 are - lighted to acknowledge the generous sponsorship of the following organizations, through ?nancial or in-kind assistance. Assistance of our sponsors allowed to - ganize scienti?c as well as social program of the conference.
By modern analytic mechanics we mean the classical mechanics of today, that is, the mechanics that has proven particularly useful in understanding the universe as we experience it from the solar system, to particle accelerators, to rocket motion. The mathematical and numerical techniques that are part of this mechanics that we present are those that we have found to be particularly productive in our work in the subject. The balance of topics in this book is somewhat different from previous texts. We emphasize the use of phase space to describe the dynamics of a system and to have a qualitative understanding of nonlinear systems. We incorporate exercises that are to be done using a computer to solve linear and nonlinear problems and to have a graphical representation of the results. While analytic solutions of physics problems are to be prefer. red, it is not always possible to find them for all problems. When that happens, techniques other than analysis must be brought to bear on the problem. In many cases numerical treatments are useful in generating solutions, and with these solutions often come new insights. These insights can sometimes be used for making further analytic progress, and often the process is iterative. Thus the ability to use a computer to solve problems is one of the tools of the modern physicist. Just as analytic problem-solving enhances the student's understanding of physics, so will using the computer enhance his or her appreciation of the subject.
This textbook provides details of the derivation of Lagrange's planetary equations and of the closely related Gauss's variational equations, thereby covering a sorely needed topic in existing literature. Analytical solutions can help verify the results of numerical work, giving one confidence that his or her analysis is correct. The authors-all experienced experts in astrodynamics and space missions-take on the massive derivation problem step by step in order to help readers identify and understand possible analytical solutions in their own endeavors. The stages are elementary yet rigorous; suggested student research project topics are provided. After deriving the variational equations, the authors apply them to many interesting problems, including the Earth-Moon system, the effect of an oblate planet, the perturbation of Mercury's orbit due to General Relativity, and the perturbation due to atmospheric drag. Along the way, they introduce several useful techniques such as averaging, Poincare's method of small parameters, and variation of parameters. In the end, this textbook will help students, practicing engineers, and professionals across the fields of astrodynamics, astronomy, dynamics, physics, planetary science, spacecraft missions, and others. "An extensive, detailed, yet still easy-to-follow presentation of the field of orbital perturbations." - Prof. Hanspeter Schaub, Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder "This book, based on decades of teaching experience, is an invaluable resource for aerospace engineering students and practitioners alike who need an in-depth understanding of the equations they use." - Dr. Jean Albert Kechichian, The Aerospace Corporation, Retired "Today we look at perturbations through the lens of the modern computer. But knowing the why and the how is equally important. In this well organized and thorough compendium of equations and derivations, the authors bring some of the relevant gems from the past back into the contemporary literature." - Dr. David A Vallado, Senior Research Astrodynamicist, COMSPOC "The book presentation is with the thoroughness that one always sees with these authors. Their theoretical development is followed with a set of Earth orbiting and Solar System examples demonstrating the application of Lagrange's planetary equations for systems with both conservative and nonconservative forces, some of which are not seen in orbital mechanics books." - Prof. Kyle T. Alfriend, University Distinguished Professor, Texas A&M University
This book discusses the recent advances in aircraft design methodologies. It provides an overview of topics such as shape optimization, robust design and aeroelasticity, focusing on fluid-structure numerical methodologies to address static and dynamic aeroelastic problems. It demonstrates that the capability to evaluate the interaction between aerodynamics, inertia and elastic forces is important to avoid drag penalties, control system efficiency loss and generation of potentially dangerous phenomena, such as divergence, control reversal and flutter. The book particularly highlights the advances in "high fidelity" CFD-CSM coupling, describing the latest experimental research to validate the numerical fluid-structure interaction analysis methodologies resulting from the EU-funded RBF4AERO and RIBES projects.
Despite their novelty, wavelets have a tremendous impact on a number of modern scientific disciplines, particularly on signal and image analysis. Because of their powerful underlying mathematical theory, they offer exciting opportunities for the design of new multi-resolution processing algorithms and effective pattern recognition systems. This book provides a much-needed overview of current trends in the practical application of wavelet theory. It combines cutting edge research in the rapidly developing wavelet theory with ideas from practical signal and image analysis fields. Subjects dealt with include balanced discussions on wavelet theory and its specific application in diverse fields, ranging from data compression to seismic equipment. In addition, the book offers insights into recent advances in emerging topics such as double density DWT, multiscale Bayesian estimation, symmetry and locality in image representation, and image fusion. Audience: This volume will be of interest to graduate students and researchers whose work involves acoustics, speech, signal and image processing, approximations and expansions, Fourier analysis, and medical imaging.
Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts. Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves. Features Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations. Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling. Contains numerous examples to support the theoretical material. Supplementary MATLAB codes available via GitHub.
This book explores an ongoing puzzle: why don't catastrophic events, such as oil shocks and nuclear meltdowns, always trigger transitions away from the energy technologies involved? Jennifer F. Sklarew examines how two key factors - shocks and stakeholder relationships - combine to influence energy system transitions, applying a case study of Japan's trajectory from the time of the 1970s oil crises through the period following the 2011 Fukushima Daiichi nuclear disaster. Examining the role of diverse stakeholders' resilience priorities, she focuses on how changes in stakeholder cooperation and clout respond to and are affected by these shocks, and how this combination of shocks and relationship changes shapes energy policies and policymaking. From Japan's narrative, the book derives unique and universal lessons for cooperation on innovation and energy system resilience applicable to communities and nations around the globe, including implications for transitions in the context of the COVID-19 pandemic. The book also places energy system resilience and innovation in the broader context of the food-energy-water-climate nexus. Building Resilient Energy Systems: Lessons from Japan will appeal to all levels of readers with an interest in energy policy, energy technologies and energy transitions: experts and specialists; academics and students; practitioners and policymakers.
J.M. Burgers (1895--1981) is regarded as one of the leading scientists in the field of fluid mechanics, contributing many important results, a number of which still bear his name. However, the work of this outstanding scientist was mostly published in the Proceedings and Transactions of The Royal Netherlands Academy of Sciences, of which he was a distinguished member. Nowadays, this work is almost impossible to obtain through the usual library channels. Therefore, the editors have decided to reissue the most important work of J.M. Burgers, which gives the reader access to the original papers which led to important results, now known as the Burgers Equation, the Burgers Vector and the Burgers Vortex. Further, the book contains a biography of J.M. Burgers, which provides the reader with both information on his scientific life, as well as a rounded impression of the many activities which J.M. Burgers performed or was involved in outside his science.
This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.
This volume provides a self-contained introduction to applications of loop representations, and the related topic of knot theory, in particle physics and quantum gravity. These topics are of considerable interest because they provide a unified arena for the study of the gauge invariant quantization of Yang-Mills theories and gravity, and suggest a promising approach to the eventual unification of the four fundamental forces. The book begins with a detailed review of loop representation theory and then describes loop representations in Maxwell theory, Yang-Mills theories as well as lattice techniques. Applications in quantum gravity are then discussed, with the following chapters considering knot theories, braid theories and extended loop representations in quantum gravity. A final chapter assesses the current status of the theory and points out possible directions for future research. First published in 1996, this title has been reissued as an Open Access publication on Cambridge Core.
Magnetostatics, the mathematical theory that describes the forces and fields resulting from the steady flow of electrical currents, has a long history. By capturing the basic concepts, and building towards the computation of magnetic fields, this book is a self-contained discussion of the major subjects in magnetostatics. Overviews of Maxwell's equations, the Poisson equation, and boundary value problems pave the way for dealing with fields from transverse, axial and periodic magnetic arrangements and assemblies of permanent magnets. Examples from accelerator and beam physics give up-to-date context to the theory. Both complex contour integration and numerical techniques for calculating magnetic fields are discussed in detail with plentiful examples. Theoretical and practical information on carefully selected topics make this a one-stop reference for magnet designers, as well as for physics and electrical engineering undergraduate students. This title, first published in 2016, has been reissued as an Open Access publication on Cambridge Core.
This volume contains lectures given at the NATO Advanced Study Institute on Long-Time Predictions in Dynamics conducted in Cortina d'Ampezzo, Italy during August 3-16, 1975. The lectures were presented in groups, according to the original structure of the Institute. Under "Fundamentals" the general concepts were treated by Contopoulos, DeWitt, Reichl, Stiefel, Szebehely, Bartlett, Kirchgraber, Verhults and Sigrist. This was followed by the series of lectures on "Numerical and Statistical Analysis" offered by Aarseth, Baumgarte and Tapley. The third principal subject was "Three and Many-Body Problems" with Garfinkel, Broucke, Hadjidemetriou, Marchal, Nahon, Waldvogel, Lasco, and Markellos as the major speakers. The last group of lectures treated "Dynamics in Astronomy" by Colombo, Message, Ovenden, Vicente, and Douglas. Some of the outstanding lectures were rather didactic in nature or were published elsewhere or could not meet the deadline for publication. The Editors will be delighted to furnish leads to those interested in these lectures. Some of the lectures were presented in form of seminar-contributions. These are published as Summaries at the end of this Volume. The Institute was dedicated to the conceptual, analytical, numerical and applied aspects of the problem of long-time predic tion in dynamics. This fundamental problem emerged in all lectures: linearization, regularization, stabilization, averaging, estimation, periodic orbits, qualitative aspects, secular variations, resonance, invariants, etc. were some of the subjects treated in depth. Some conclusions are offered here with the utmost humility and with the advance acknowledgement of the fact that we all hear what we want to hear."
The present decade is opening new frontiers in high-energy astrophysics. After the X-ray satellites in the 1980's, including Einstein, Tenma, EXOSAT and Ginga, several satellites are, or will soon be, simultaneously in orbit offering spectacular advances in X-ray imaging at low energies (ROSATj Yohkoh) as well as at high energies (GRANAT), in spectroscopy with increased bandwidth (ASCAj SAX), and in timing (XTE). While these satellites allow us to study atomic radiation from hot plasmas or energetic electrons, other satellites study nuclear radiation at gamma-ray energies (CGRO) associated with radioactivity or spallation reactions. These experiments show that the whole universe is emitting radiation at high energies, hence we call it the "hot universe. " The hot universe, preferentially emitting X- and gamma-rays, provides us with many surprises and much information. A symposium "The Hot Universe" was held in conjunction with the XXIIIrd General Assembly of the International Astronomical Union, at Kyoto on August 26-30 in 1997. The proceedings are organized as follows. Synthetic view of "the hot universe" is discussed in Section 1, "Plasma and Fresh Nucleosynthesis Phenomena." Timely discussions on the strategy for future missions "Future Space Program" are found in Section 2. Then the contents are divided into two major subjects: the compact objects and thin hot diffuse plasmas. Section 3 is devoted to the category of compact objects which includes white dwarfs, neutron stars, and gravitationally collapsed objects: stellar mass black holes or active galactic nuclei.
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property)."
This book is an outgrowth of the NSF-CBMS conference Nonlinear Waves GBP3 Weak Turbulence held at Case Western Reserve University in May 1992. The principal speaker at the conference was Professor V. E. Zakharov who delivered a series of ten lectures outlining the historical and ongoing developments in the field. Some twenty other researchers also made presentations and it is their work which makes up the bulk of this text. Professor Zakharov's opening chapter serves as a general introduction to the other papers, which for the most part are concerned with the application of the theory in various fields. While the word "turbulence" is most often associated with f:l. uid dynamics it is in fact a dominant feature of most systems having a large or infinite number of degrees of freedom. For our purposes we might define turbulence as the chaotic behavior of systems having a large number of degrees of freedom and which are far from thermodynamic equilibrium. Work in field can be broadly divided into two areas: * The theory of the transition from smooth laminar motions to the disordered motions characteristic of turbulence. * Statistical studies of fully developed turbulent systems. In hydrodynamics, work on the transition question dates back to the end of the last century with pioneering contributions by Osborne Reynolds and Lord Rayleigh.
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases- multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author's insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.
Formalism of classical mechanics underlies a number of powerful mathematical methods that are widely used in theoretical and mathematical physics. This book considers the basics facts of Lagrangian and Hamiltonian mechanics, as well as related topics, such as canonical transformations, integral invariants, potential motion in geometric setting, symmetries, the Noether theorem and systems with constraints. While in some cases the formalism is developed beyond the traditional level adopted in the standard textbooks on classical mechanics, only elementary mathematical methods are used in the exposition of the material. The mathematical constructions involved are explicitly described and explained, so the book can be a good starting point for the undergraduate student new to this field. At the same time and where possible, intuitive motivations are replaced by explicit proofs and direct computations, preserving the level of rigor that makes the book useful for the graduate students intending to work in one of the branches of the vast field of theoretical physics. To illustrate how classical-mechanics formalism works in other branches of theoretical physics, examples related to electrodynamics, as well as to relativistic and quantum mechanics, are included.
The goal of this book is to present the new trend of Computational Fluid Dynamics (CFD) for the 21 st Century. It consists of papers presented at a symposium honoring Prof. No buyuki Satofuka on the occasion of his 60th birthday. The symposium entitled Computational Fluid Dynamics fOT the 21st Century was held at Kyoto Institute of Technology (KIT) in Kyoto, Japan on July 15-17,2000. The symposium was hosted by KIT as a memorial event celebrating the 100 year anniversary of this establishment. The invited speakers were from Ja pan as weil as from the international community in Asia, Europe and North America. It is a great pleasure to dedicate this book to Prof. Satofuka in appreciation ofhis contributions to this field. During the last 30 years, Prof. Satofuka made many important contributions to CFD ad vancing the numerics and our understanding of flow physics in different regimes. The details of his contributions are discussed in the first chapter. The book contains chapters covering re lated topics with emphasis on new promising directions for the 21 st Century. The chapters of the book reflect the 10 sessions of the symposium on both the numerics and the applications including grid generation and adaptation, new numerical schemes, optimi zation techniques and parallel computations as weil as applications to multi-sc ale and multi physics problems, design and flow control and new topics beyond aeronautics. In the follow ing, the chapters of the book are introduced."
This book provides, for the first time, a single complete reference on microphone arrays. Top researchers in this field contributed articles addressing their specific topics of study. The results cover the current state of the art in microphone array research, development, and technological application. Part I concerns the problem of enhancing the speech signal acquired by an array of microphones. Part II is devoted to the source localization problem. Part III details some specific applications of microphone array technology available today. Part IV presents expert summaries of current open problems in the field, as well as personal views of what the future of microphone array processing might hold. The individual chapters selected for the book were designed to be tutorial in nature with a specific emphasis on recent important results. They are of utility to a large audience, from the student or practising engineer just approaching the field to the experienced researcher.
This book tackles quantum gravity via the so-called background field method and its effective action functional. The author presents an explicitly covariant and effective technique to calculate the de Witt coefficients and to analyze the Schwinger-de Wit asymptotic expansion of the effective action. He also investigates the ultraviolet behaviour of higher-derivative quantum gravity.The book addresses theoretical physicists, graduate students as well as researchers, but should also be of interest to physicists working in mathematical or elementary particle physics. |
You may like...
Solving Problems in Fluid Mechanics…
J.F. Douglas, R D Matthews
Paperback
R2,377
Discovery Miles 23 770
Fundamental Research and Application of…
Hongliang Luo
Hardcover
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,253
Discovery Miles 62 530
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, …
Paperback
R1,431
Discovery Miles 14 310
Friction, Lubrication and Wear
Mohammad Asaduzzaman Chowdhury
Hardcover
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R869
Discovery Miles 8 690
|