Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Classical mechanics
"Wave Propagation in Nanostructures "describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and Graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behavior in these low dimensional structures.
This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
In the last two decades extraordinary progress in the experimental handling of single quantum objects has spurred theoretical research into investigating the coupling between quantum systems and their environment. Decoherence, the gradual deterioration of entanglement due to dissipation and noise fed to the system by the environment, has emerged as a central concept. The present set of lectures is intended as a high-level, but self-contained, introduction into the fields of quantum noise and dissipation.In particular their influence on decoherence and applications pertaining to quantum information and quantum communication are studied, leading the nonspecialist researchers and the advanced students gradually to the forefront of research.
The "Turbulence and Interactions 2009" (TI2009) conference was held in Saint- Luce on the island of La Martinique, France, on May 31-June 5, 2009. The sci- tific sponsors of the conference were * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * Institut Jean Le Rond d'Alembert, Paris, * ONERA. This second TI conference was very successful as it attracted 65 researchers from 17 countries. The magnificent venue and the beautiful weather helped the participants to discuss freely and casually, share ideas and projects, and spend very good times all together. The organisers were fortunate in obtaining the presence of the following - vited speakers: L. Fuchs (KTH, Stockholm and Lund University), J. Jimenez (Univ. Politecnica Madrid), C.-H. Moeng (NCAR), A. Scotti (University of North Carolina), L. Shen (Johns Hopkins University) and A.J. Smits (Princeton Univ- sity). The topics covered by the 62 contributed papers ranged from experimental results through theory to computations. They represent a snapshot of the state-- the-art in turbulence research. The papers of the conference went through the usual reviewing process and the result is given in this book of Proceedings. In the present volume, the reader will find the keynote lectures followed by the contributed talks given in alphabetical order of the first author.
Some words about SCART 2000. SCART stands for science and art. SCART meetings are organized in a loose time sequence by an international group of scientists, most of them fluid-dynamicists. The first meeting was held in Hong-Kong, the second one in Berlin, and the third, and latest, one in Zurich. SCART meetings include a scientific conference and a number of art events. The intention is to restart a dialogue between scientists and artists which was so productive in the past. To achieve this goal several lectures given by scientists at the conference are intended for a broader public. In the proceedings they are denoted as SCART lectures. The artists in tum address the main theme of the conference with their contributions. The lectures at SCART 2000 covered the entire field of fluiddynamics, from laminar flows in biological systems to astrophysical events, such as the explosion of a neutron star. The main exhibition by Dutch and Swiss artists showed video and related art under the title 'Walking on Air'. Experimental music was performed in two concerts.
This book discusses the recent advances in aircraft design methodologies. It provides an overview of topics such as shape optimization, robust design and aeroelasticity, focusing on fluid-structure numerical methodologies to address static and dynamic aeroelastic problems. It demonstrates that the capability to evaluate the interaction between aerodynamics, inertia and elastic forces is important to avoid drag penalties, control system efficiency loss and generation of potentially dangerous phenomena, such as divergence, control reversal and flutter. The book particularly highlights the advances in "high fidelity" CFD-CSM coupling, describing the latest experimental research to validate the numerical fluid-structure interaction analysis methodologies resulting from the EU-funded RBF4AERO and RIBES projects.
Shock waves in multiphase flows refers to a rich variety of phenomena of interest to physicists, chemists, and fluid dynamicists, as well as mechanical, biomedical and aeronautical engineers. This volume treats shock and expansion waves in: - complex, bubbly liquids (L. van Wijngaarden, Y. Tomita, V. Kedrinskii) and - cryogenic liquids (M. Murakami) and examines the relationship of shock waves with - phase transitions (A. Guha, C.F. Delale, G. Schnerr, M.E.H. van Dongen) - induced phase transitions (G.E.A. Meier) as well as their interaction with - solid foams, textiles, porous and granular media (B. Skews, D.M.J. Smeulders, M.E.H. van Dongen, V. Golub, O. Mirova). All chapters are self-contained, so they can be read independently, although they are of course thematically interrelated. Taken together, they offer a timely reference on shock waves in multiphase flows, including new viewpoints and burgeoning developments. The book will appeal to beginners as well as professional scientists and engineers.
This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important.
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
An exciting new direction in hydrodynamic stability theory and the transition to turbulence is concerned with the role of disconnected states or finite amplitude solutions in the evolution of disorder in fluid flows. This volume contains refereed papers presented at the IUTAM/LMS sponsored symposium on "Non-Uniqueness of Solutions to the Navier-Stokes equations and their Connection with Laminar-Turbulent Transition" held in Bristol 2004. Theoreticians and experimentalists gathered to discuss developments in understanding both the onset and collapse of disordered motion in shear flows such as those found in pipes and channels. The central objective of the symposium was to discuss the increasing amount of experimental and numerical evidence for finite amplitude solutions to the Navier-Stokes equations and to set the work into a modern theoretical context. The participants included many of the leading authorities in the subject and this volume captures much of the flavour of the resulting stimulating and lively discussions.
Recent advances in the field of fracture of engineering materials and structures have increasingly indicated its multidisciplinary nature. This area of research now involves scientists and engineers who work in materials science, applied mathematics and mechanics, and also computer scientists. The present volume, which contains the Proceedings of the Joint FEFG/lCF International Conference on Fracture of Engineering Materials and Structures held in Singapore from the 6th to 8th of August 1991, is a testimony of this multidisciplinary nature. This International Conference was the Second Symposium of the Far East Fracture Group (FEFG) and thus provided a unique opportunity for researchers and engineers in the Far East region to exchange and acquire knowledge of new advances and applications in fracture. The Conference was also the Inter-Quadrennial International Conference on Fracture (ICF) for 1991 and thus appealed to researchers in the international arena who wished to take advantage of this meeting to present their findings. The Conference has brought together over 130 participants from more than 24 countries, and they represented government and industrial research laboratories as well as academic institutions. It has thus achieved its objective of bringing together scientists and engineers with different backgrounds and perspectives but with . a common interest in new developments in the fracture of engineering materials and structures. This volume contains 4 keynote papers, 4 invited papers and 130 contributed papers.
L.A. Galin 's book on contact problems is a remarkable work. Actually there are two books: the first, published in 1953 deals with contact problems in the classical theory of elasticity; this is the one that was translated into English in 1961. The second book, published in 1980, included the first, and then had new sections on contact problems for viscoelastic materials, and rough contact problems; this section has not previously been translated into English. In this new translation, the original text and the mathematical analysis have been completely revised, new material has been added, and the material appearing in the 1980 Russian translation has been completely rewritten. In addition there are three essays by students of Galin, bringing the analysis up to date.
This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases- multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author's insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.
The continuous wavelet transform has deep mathematical roots in the work of Alberto P. Calderon. His seminal paper on complex method of interpolation and intermediate spaces provided the main tool for describing function spaces and their approximation properties. The Calderon identities allow one to give integral representations of many natural operators by using simple pieces of such operators, which are more suited for analysis. These pieces, which are essentially spectral projections, can be chosen in clever ways and have proved to be of tremendous utility in various problems of numerical analysis, multidimensional signal processing, video data compression, and reconstruction of high resolution images and high quality speech. A proliferation of research papers and a couple of books, written in English (there is an earlier book written in French), have emerged on the subject. These books, so far, are written by specialists for specialists, with a heavy mathematical flavor, which is characteristic of the Calderon-Zygmund theory and related research of Duffin-Schaeffer, Daubechies, Grossman, Meyer, Morlet, Chui, and others. Randy Young's monograph is geared more towards practitioners and even non-specialists, who want and, probably, should be cognizant of the exciting proven as well as potential benefits which have either already emerged or are likely to emerge from wavelet theory.
Provides a comprehensive environmental assessment of advanced nanocatalyst for biodiesel production in world's energy demand supply. Discusses the green platform based nanocatalyst like metal oxides/sulphides, 2D-dimensional layered material synthesis and their relevance for biodiesel production. Presents pathway for a cheaper, cleaner and environmentally friendly processing techniques for biodiesel production
Parallel CFD 2008, the twentieth in the high-level international series of meetings featuring different aspect of parallel computing in computational?uid dynamics and other modern scienti?c domains was held May 19?22, 2008 in Lyon, France. The themes of the 2008 meeting included the traditional emphases of this c- ference, and experiences with contemporary architectures. Around 70 presentations were included into the conference program in the following sessions: Parallel Algorithms and solvers Parallel performances with contemporary architectures Structured and unstructured grid methods, boundary methods software framework and components architecture CFD applications(Bio ?uid, environmentalproblem)Lattice Boltzmannmethodand SPH Optimisation in Aerodynamics This book presents an up-to-date overviewof the state of the art in Parallel C- putational Fluid Dynamics from Asia, Europe, and North America. This reviewed proceedingsincluded about sixty percent of the oral lectures presented at the conf- ence. The editors. VI Preface Parallel CFD 2008 was organized by the Institut Camille Jordan of the Univ- sity of Lyon 1 in collaboration with the Center for the Development of the Parallel Scienti?c Computing. The Scienti?c Committee and Local Organizers of Parallel CFD 2008 are - lighted to acknowledge the generous sponsorship of the following organizations, through ?nancial or in-kind assistance. Assistance of our sponsors allowed to - ganize scienti?c as well as social program of the conference.
In this book of reminiscences, this prize-winning Russian physicist presents a sweeping discourse on scientific achievement from the thirties to the present day. On the basis of his own work and that of leading international scientists such as P. L. Kapitza, L. Landau, R. Feynman and J. Bardeen, the author recounts the establishment and development of the superfluidity of liquid helium and quantum hydrodynamics. In an interesting and readable style, E. L. Andronikashvili speaks of the scientific quest and the human interrelationships that accompany scientific creativity. For historians of science and physicists.
By modern analytic mechanics we mean the classical mechanics of today, that is, the mechanics that has proven particularly useful in understanding the universe as we experience it from the solar system, to particle accelerators, to rocket motion. The mathematical and numerical techniques that are part of this mechanics that we present are those that we have found to be particularly productive in our work in the subject. The balance of topics in this book is somewhat different from previous texts. We emphasize the use of phase space to describe the dynamics of a system and to have a qualitative understanding of nonlinear systems. We incorporate exercises that are to be done using a computer to solve linear and nonlinear problems and to have a graphical representation of the results. While analytic solutions of physics problems are to be prefer. red, it is not always possible to find them for all problems. When that happens, techniques other than analysis must be brought to bear on the problem. In many cases numerical treatments are useful in generating solutions, and with these solutions often come new insights. These insights can sometimes be used for making further analytic progress, and often the process is iterative. Thus the ability to use a computer to solve problems is one of the tools of the modern physicist. Just as analytic problem-solving enhances the student's understanding of physics, so will using the computer enhance his or her appreciation of the subject.
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.
Despite their novelty, wavelets have a tremendous impact on a number of modern scientific disciplines, particularly on signal and image analysis. Because of their powerful underlying mathematical theory, they offer exciting opportunities for the design of new multi-resolution processing algorithms and effective pattern recognition systems. This book provides a much-needed overview of current trends in the practical application of wavelet theory. It combines cutting edge research in the rapidly developing wavelet theory with ideas from practical signal and image analysis fields. Subjects dealt with include balanced discussions on wavelet theory and its specific application in diverse fields, ranging from data compression to seismic equipment. In addition, the book offers insights into recent advances in emerging topics such as double density DWT, multiscale Bayesian estimation, symmetry and locality in image representation, and image fusion. Audience: This volume will be of interest to graduate students and researchers whose work involves acoustics, speech, signal and image processing, approximations and expansions, Fourier analysis, and medical imaging.
J.M. Burgers (1895--1981) is regarded as one of the leading scientists in the field of fluid mechanics, contributing many important results, a number of which still bear his name. However, the work of this outstanding scientist was mostly published in the Proceedings and Transactions of The Royal Netherlands Academy of Sciences, of which he was a distinguished member. Nowadays, this work is almost impossible to obtain through the usual library channels. Therefore, the editors have decided to reissue the most important work of J.M. Burgers, which gives the reader access to the original papers which led to important results, now known as the Burgers Equation, the Burgers Vector and the Burgers Vortex. Further, the book contains a biography of J.M. Burgers, which provides the reader with both information on his scientific life, as well as a rounded impression of the many activities which J.M. Burgers performed or was involved in outside his science. |
You may like...
Numerical Modeling Of Water Waves In…
Pablo Higuera, Jinghua Wang, …
Hardcover
R1,982
Discovery Miles 19 820
Munson, Young and Okiishi's Fundamentals…
Andrew L Gerhart, John I Hochstein, …
Paperback
R1,463
Discovery Miles 14 630
Solving Problems in Fluid Mechanics…
J.F. Douglas, R D Matthews
Paperback
R2,435
Discovery Miles 24 350
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R882
Discovery Miles 8 820
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,560
Discovery Miles 55 600
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,256
Discovery Miles 62 560
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Paperback
R886
Discovery Miles 8 860
Classical Mechanics - Pearson New…
Herbert Goldstein, John Safko, …
Paperback
R2,107
Discovery Miles 21 070
|